

Main Menu

Select one of the following modules by clicking on the corresponding shape...

Reduction formula

Trigonometric equations

Mathematical jokes

Click to return to the main menu

Trigonometric functions

Ilijonometric functions

Introduction

Example 1

Trigonometric functions of acute angle

Trigonometric functions of acute angle: sine, cosine, tangent, cotangent, secant, cosecant.

Exact values of trigonometric functions for some most used acute angles

Expressing trigonometric functions of an acute angle σ in terms of x and y coordinates

b

(ADJACENT σ)

a (OPPOSITE σ)

hyp opp σ $\sin(\sigma) =$ $\csc(\sigma) =$ • hyp opp σ adj σ hyp $\cos(\sigma) =$; Sec (σ) = adj σ hyp adj σ opp σ $\cot(\sigma)$ $\tan(\sigma)$ adj σ opp σ

Or in words...

- Sine: $\sin \sigma = a / c$
 - (a ratio of an opposite leg to a hypotenuse)
- Cosine: $\cos \sigma = b / c$
 - (a ratio of an adjacent leg to a hypotenuse)
- Tangent: $\tan \sigma = a / b$
 - (a ratio of an opposite leg to an adjacent leg)
- Cotangent: $\cot \sigma = b / a$
 - (a ratio of an adjacent leg to an opposite leg)
- Secant: $\sec \sigma = c / b$
 - (a ratio of a hypotenuse to an adjacent leg)
- Cosecant: $\csc \sigma = c / a$
 - (a ratio of a hypotenuse to an opposite leg)

Ilifonomstic finctions

Introduction

Example 1

Example 2

<u>example</u>

What are the six trigonometric ratios for σ ?

NOTE!!!

We need the length of at least one of the legs of our right triangle.

Use the Pythagorean Theorem . . .

 $3^2 + ?^2 = 5^2$ $9 + ?^2 = 25$ $?^2 = 16$; ? = ± 4; ? = 4

Substitute your answer into the ratios:

Ilifonomstic finctions

Introduction

Example 1

example 2

Notice we have another angle at α .

We can obtain the six trigonometric ratios for α ,

Main Menu

Select one of the following modules by clicking on the corresponding shape...

Reduction formula

Trigonometric equations

Mathematical jokes

Trigonometric functions

Together the model looks as follows.

4 opp σ / adj α

With $\sigma + \alpha = 90^{\circ}$

Recall the 45° - 45° - 90° Special Triangle.

What are the six trigonometric ratios for 45°?

С hyp $X\sqrt{2}$ 45° x opp 45° 45° В Α Х adj 45° $sin(45^{\circ}) = \frac{adj}{hyp}$ $=\frac{x}{x\sqrt{2}} \quad ;=\frac{1}{\sqrt{2}}$ √2 2 adj X $\cos(45^{\circ})$ hyp $x\sqrt{2}$ 2 2 opp X $tan(45^{\circ})$ adj X

adj 45°

Recall the 30° - 60° - 90° special triangle.

What are the six trigonometric ratios for 60°?

For 30°

Thus,

For 60°

Thus,

Summary

σ	sin(σ)	cos(σ)	tan(σ)
30°	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
45°	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60°	$\sqrt{3}/2$	1/2	$\sqrt{3}$

Angle σ	sin σ	COS σ	tan o			
Trigonometric ratios of 30° and 60°						
30 °						
600						
Trigonom	otrio rotio					
Irigonometric ratios of 0°, 45° and 90°						
00						
45 °						
90°						
		and the second second				

Reduction formula of trigonometric functions of 90° - θ

• These formulas permit:

 to find a numerical values of trigonometric functions of angles, greater than 90°;

 to execute transformations, leading to more simple expressions;
 to get rid of negative angles and angles, greater than 360°.

	sin	COS	tan	cot
-α	– sin a	+cosα	– tan α	– cot α
90° – α	+cosα	$+\sin \alpha$	+cotα	+ tan α
90°+α	+cosα	– sin α	– cot α	– tan α
180° – α	$+\sin \alpha$	– cos a	– tan α	– cotα
180°+α	– sin α	– cos a	+ tan α	+cotα
270°-α	– cos A	– sin a	+cotα	+tan α
270°+α	– cos α	$+\sin \alpha$	– cot α	– tan α
360° k – α	$-\sin lpha$	+cosα	– tan α	– cot α
360° k + α	$+\sin \alpha$	+cosα	+ tan α	+cotα

Main Menu

Select one of the following modules by clicking on the corresponding shape...

Reduction formula

Trigonometric equations

Mathematical jokes

Trigonometric functions

Solving Trigonometric Equations

Example1

Solving Trigonometric Equations in the interval [0°;360°]

Step 1: Bring trigonometric equations into the form of sin x = number or cos x = number or tan x = number.

If you have cosec x = number or sec x = number or cot x = number, then take the inverse of each side of the equation and bring into form of sin x = number or cos x = number or tan x = number. Step 2 :

The sign of the trigonometric ratio, positive or minus, indicates in which quadrant the angle lies in

Step3: Obtain the reference angle from your calculator

Note: Always enter the trig ratio into the calculator as a positive value to obtain the reference angle.

 Solve for x in the given interval correct to one decimal place :

 $2 \sin x = 0.74$; $0^{\circ} < x < 360^{\circ}$

- Step 1 : $(0^{\circ} < x < 360^{\circ})2 \sin x = 0.74 \sin x = 0.37$
- Step 2 : 1st quadrant
 2nd quadrant = [since sin x is positive] reference angle is 21,7°

• Step 3: $x = 21,7^{\circ}$ or $x = 180^{\circ}-21.7^{\circ}$ $x = 158,3^{\circ}$

Main Menu

Select one of the following modules by clicking on the corresponding shape...

Reduction formula

Trigonometric equations

Mathematical jokes

Trigonometric functions

Mathematical jokes

Einstein and telephone

Study and money

Birthdays

Two student-mathematicians, having birthdays on the same day, wished each other many happy returns on this day. One of them said:

- You'll have such birthday only in 11 years. The other answered him:

 - Okay, but you'll have such birthday only in 96 years.

Both of them were satisfied with each other

How old were they on this day ?

Solution:

One of them was 25, and other 24.

Why?

25=52, the next square is 62=36, i.e. in 11 years. 24=4!, the next factorial is 5!=120, i.e. in 96 years.

Mathematical jokes

Einstein and telephone

Study and money

Birthdays

Einstein and telephone

 One woman asked Einstein to remember her telephone number: 361-343. Einstein answered:

- It's very easy. 19 squared and 7 cubed.

Mathematical jokes

Einstein and telephone

Study and money

Birthdays

- How is the biggest side in a right-angled triangle called ?
 - As all the pupils keep silent the teacher begins to help:
 - Ну-ро-...
 - Hippopotamus !

Mathematical jokes

Einstein and telephone

Study and money

Birthdays

Study and money

 Father writes a letter to his son-student: "Dear John!

I send you 50 dollars, as you asked. By the way remember please that the number 50 is written with one zero, but not with two."

Mathematical jokes

Einstein and telephone

Study and money

Birthdays

