
 Trigonometry

Main Menu

Select one of the following modules by clicking on the corresponding shape...

Reduction formula

Click to return to the main menu

$$
\int d \| d y d d y d y
$$

『ゴgonomedjec juscijons of acute envile

Trigonometric functions of acute angle： sine，cosine，tangent，cotangent， secant，cosecant．

Exact values of trigonometric functions for some most used acute angles

Expressing trigonometric

 functions of an acute angle σ in terms of x and y coordinates
$\sin (\sigma)=\frac{\mathrm{opp} \sigma}{\text { hyp }}$
$\csc (\sigma)=\frac{\text { hyp }}{\text { opp } \sigma}$
$\cos (\sigma)=\frac{\operatorname{adj} \sigma}{\text { hyp }} ; \sec (\sigma)=\frac{\text { hyp }}{\operatorname{adj} \sigma}$
$\tan (\sigma)=\frac{\operatorname{opp} \sigma}{\operatorname{adj} \sigma} ; \cot (\sigma)=\frac{\operatorname{adj} \sigma}{\operatorname{opp} \sigma}$

Or in words...

- Sine: $\sin \sigma=a / c$
- (a ratio of an opposite leg to a hypotenuse)
- Cosine: $\cos \sigma=b / c$
- (a ratio of an adjacent leg to a hypotenuse)
- Tangent: $\tan \sigma=a / b$
- (a ratio of an opposite leg to an adjacent leg)
- Cotangent: $\cot \sigma=b / a$
- (a ratio of an adjacent leg to an opposite leg)
- Secant: $\sec \sigma=c / b$
- (a ratio of a hypotenuse to an adjacent leg)
- Cosecant: $\operatorname{cosec} \sigma=c / a$
- (a ratio of a hypotenuse to an opposite leg)

$$
J \int_{0}\|d\| d d y
$$

What are the six trigonometric ratios for σ ?

NOTE!!!

We need the length of at least one of the legs of our right triangle.

Use the Pythagorean Theorem ...

$$
3^{2}+?^{2}=5^{2}
$$

? $9+?^{2}=25$

$$
?^{2}=16 ; ?= \pm 4 ; ?=4
$$

STEP?

Substitute your answer into the ratios:

$\operatorname{adj} \sigma$

$$
\begin{aligned}
& \sin (\sigma)=\frac{4}{5} ; \csc (\sigma)=\frac{5}{4} \\
& \cos (\sigma)=\frac{3}{5} ; \sec (\sigma)=\frac{5}{3}
\end{aligned}
$$

$$
\tan (\sigma)=\frac{4}{3} ; \cot (\sigma)=\frac{3}{4}
$$

$$
\int d \| d y d d y d y
$$

Example?

Notice we have another angle at α.

We can obtain the six trigonometric ratios for α,

$\sin (\alpha)=\frac{3}{5} ; \quad \csc (\alpha)=\frac{5}{3}$
$4 \operatorname{adj} \alpha$
$\cos (\alpha)=\frac{4}{5} ; \sec (\alpha)=\frac{5}{4}$
$\tan (\alpha)=\frac{3}{4} ; \cot (\alpha)=\frac{4}{3}$

opp α

Main Menu

Select one of the following modules by clicking on the corresponding shape...

Reduction formula

Mathematical jokes

Together the model looks as follows.

With $\sigma+\alpha=90^{\circ}$

Recall the $45^{\circ}-45^{\circ}-90^{\circ}$ Special Triangle.

What are the six trigonometric ratios for $45 \div$?

$$
\sin \left(45^{\circ}\right)=\frac{\text { adj }}{\text { hyp }} ;=\frac{x}{x \sqrt{2}} ;=\frac{1}{\sqrt{2}} ;=\frac{\sqrt{2}}{2}
$$

$$
\cos \left(45^{\circ}\right)=\frac{\text { adj }}{\text { hyp }} ;=\frac{x}{x \sqrt{2}} ;=\frac{1}{\sqrt{2}} ;=\frac{\sqrt{2}}{2}
$$

$$
\tan \left(45^{\circ}\right)=\frac{\text { opp }}{\text { adj }} ;=\frac{x}{x} ;=1
$$

$\csc \left(45^{\circ}\right)=\sqrt{2}$
$\sec \left(45^{\circ}\right)=\sqrt{2}$
$\cot \left(45^{\circ}\right)=1$
adj 45º

Recall the $30^{\circ}-60^{\circ}-90^{\circ}$ special triangle.

What are the six trigonometric ratios for 60° ?

For 30°

$$
\sin \left(30^{\circ}\right)=\frac{\text { opp }}{\text { hyp }} ;=\frac{x}{2 x} ;=\frac{1}{2}
$$

$$
\cos \left(30^{\circ}\right)=\frac{\text { adj }}{\text { hyp }} ;=\frac{x \sqrt{3}}{2 x} ;=\frac{\sqrt{3}}{2}
$$

$$
\tan \left(30^{\circ}\right)=\frac{\text { opp }}{}
$$

Thus,

$\csc \left(30^{\circ}\right)=2$

$$
\sec \left(30^{\circ}\right)=\frac{2}{\sqrt{3}} ;=\frac{2 \sqrt{3}}{3}
$$

$$
\cot \left(30^{\circ}\right)=\frac{3}{\sqrt{3}} ;=\sqrt{3}
$$

For 60응

Thus,

$$
\csc \left(60^{\circ}\right)=\frac{2}{\sqrt{3}} ;=\frac{2 \sqrt{3}}{3}
$$

$$
\sec \left(60^{\circ}\right)=2
$$

$$
\cot \left(60^{\circ}\right)=\frac{1}{\sqrt{3}} ;=\frac{\sqrt{3}}{3}
$$

Summary

σ	$\sin (\sigma)$	$\cos (\sigma)$	$\tan (\sigma)$
30°	$1 / 2$	$\sqrt{3} / 2$	$\sqrt{3} / 3$
45°	$\sqrt{2} / 2$	$\sqrt{2} / 2$	1
60^{ϱ}	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3}$

Angle σ	$\sin \sigma$	$\cos \sigma$	$\tan \sigma$

Trigonometric ratios of 30° and 60°
30°

60응

Trigonometric ratios of $0^{\circ}, \mathbf{4 5}^{\circ}$ and 90°

0°			
45°			
90°			

Reduction formula of trigonometric

 functions of $90^{\circ}-\theta$- These formulas permit: 1) to find a numerical values of trigonometric functions of angles, greater than 90°;

2) to execute transformations, leading to more simple expressions;
3) to get rid of negative angles and angles, greater than 360°.

	\sin	\cos	\tan	\cot
$-\alpha$	$-\sin \alpha$	$+\cos \alpha$	$-\tan \alpha$	$-\cot \alpha$
$90^{\circ}-\alpha$	$+\cos \alpha$	$+\sin \alpha$	$+\cot \alpha$	$+\tan \alpha$
$90^{\circ}+\alpha$	$+\cos \alpha$	$-\sin \alpha$	$-\cot \alpha$	$-\tan \alpha$
$180^{\circ}-\alpha$	$+\sin \alpha$	$-\cos \alpha$	$-\tan \alpha$	$-\cot \alpha$
$180^{\circ}+\alpha$	$-\sin \alpha$	$-\cos \alpha$	$+\tan \alpha$	$+\cot \alpha$
$270^{\circ}-\alpha$	$-\cos \alpha$	$-\sin \alpha$	$+\cot \alpha$	$+\tan \alpha$
$270^{\circ}+\alpha$	$-\cos \alpha$	$+\sin \alpha$	$-\cot \alpha$	$-\tan \alpha$
$360^{\circ} \alpha-\alpha$	$-\sin \alpha$	$+\cos \alpha$	$-\tan \alpha$	$-\cot \alpha$
$360^{\circ} \alpha+\alpha$	$+\sin \alpha$	$+\cos \alpha$	$+\tan \alpha$	$+\cot \alpha$

Main Menu

Select one of the following modules by clicking on the corresponding shape...

Reduction formula

Mathematical jokes

Solving
 Trigonometric Equations

Solving Trigonometric Equation in

 the interval $\left[0^{\circ} ; 360^{\circ}\right]$Step 1 : Bring trigonometric equations into the form of $\boldsymbol{\operatorname { s i n }} \mathrm{x}=$ number or $\boldsymbol{\operatorname { c o s }} \mathrm{x}=$ number or $\tan \mathrm{x}=$ number.

If you have $\operatorname{cosec} x=$ number or $\sec x=$ number or cot $x=$ number, then take the inverse of each side of the equation and bring into form of
$\sin x=$ number or $\cos x=$ number or $\tan x=$ number.

Step 2:

The sign of the trigonometric ratio, positive or minus, indicates in which quadrant the angle lies in
Step3: obtain the reference angle from your calculator
Note: Always enter the trig ratio into the calculator as a positive value to obtain the reference angle.

電

- Solve for x in the given interval correct to one decimal place :
$2 \sin x=0,74 \quad ; \quad 0^{\circ}<x<360^{\circ}$
- Step 1: $\left(0^{\circ}<x<360^{\circ}\right) 2 \sin x=0,74 \sin x=0,37$
- Step 2 : 1st quadrant 2nd quadrant $=$ [since $\sin \mathrm{x}$ is positive] reference angle is $21,7^{\circ}$
- Step 3: $x=21,7^{\circ}$ or $x=180^{\circ}-21.7^{\circ}$

Main Menu

Select one of the following modules by clicking on the corresponding shape...

Reduction formula

Mathematical jokes

Mathematicaljokes

Einstein and telephone

Study and money

Two student-mathematicians, having birthdays on the same day, wished each other many happy returns on this day. One of them said:

- You'll have such birthday only in 11 years. The other answered him:
- - Okay, but you'll have such birthday only in 96 years.
- Both of them were satisfied with each other
- How old were they on this day?

Solution:

One of them was 25 , and other 24 .

Why?

$25=52$, the next square is $62=36$,
i.e. in 11 years.
$24=4!$, the next factorial is $5!=120$,
i.e. in 96 years.

Mathematicaljokes

Einstein and telephone

Study and money

Einstein and telephone

- One woman asked Einstein to remember her telephone number: 361-343.
Einstein answered:
- It's very easy. 19 squared and 7 cubed.

Mathematicaljokes

Einstein and telephone

Study and money

New in geometry

- - How is the biggest side in a right-angled triangle called?
As all the pupils keep silent the teacher begins to help:
- Hy-po-...
- Hippopotamus!

Mathematicaljokes

Einstein and telephone

Study and money

Study and money

- Father writes a letter to his son-student: "Dear John! I send you 50 dollars, as you asked. By the way remember please that the number 50 is written with one zero, but not with two."

Mathematicaljokes

Einstein and telephone

Study and money

