

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2016

ELECTRICAL TECHNOLOGY MEMORANDUM

MARKS: 200

This memorandum consists of 10 pages.

QUESTION 1: OCCUPATIONAL HEALTH AND SAFETY, TOOLS AND **MEASURING INSTRUMENTS**

1.1	Good housekeeping will ensure a safer and better organised workshop. A safer working environment allows for better profits, higher productivity, a happier workforce and saves time. $\checkmark \checkmark$	(2)		
1.2	 Failure to wear protective clothing. ✓ Horseplay in the workshop. ✓ (Any two relevant answers.) 	(2)		
1.3	A badly planned/unorganised workshop. ✓ (Any relevant answer.)	(1)		
1.4	 To measure AC and DC voltage. ✓ Analyse relationship between waveforms. ✓ Measure the frequency of the waveforms. ✓ 	(3)		
1.5	 An insulation resistance tester can measure very high resistance as required by the Code of Practice. ✓ The voltage to be used to test insulation levels should be double the supply voltage. ✓ 	(2) [10]		
QUE	QUESTION 2: SINGLE-PHASE AC GENERATION AND SINGLE-PHASE TRANSFORMERS			

2.1	 Alternating current is when the current reverses its direction at constant intervals of time. ✓ Direct current is when the current flows in one direction only. ✓ 	(2)
2.2	Root-Mean-Square is the amount of DC that is required for producing the same heat as a AC waveform. $\checkmark\checkmark$	(2)
2.3	$ \Phi = BA \checkmark = 3 x (900 x 10^{-6}) \checkmark = 2,7 mWb \checkmark $	(3)
2.4	$V_{AVE} = 0,637 \times V_{Max} \checkmark$ = 0,637 x 16 \checkmark = 10,19 V \checkmark	(3)
2.5	EMF = BlvSin $\theta \checkmark$ = 0,08 x 0,3 x 50 Sin 90° \checkmark = 1,2 V \checkmark	(3)
2.6	$V_{RMS} = V_{MAX \times 0,707}$ $V_{MAX} = \underbrace{V_{RMS}}_{0,707}$	
	$=\frac{240}{0,707}$	
	= 339,46 V ✓	(3)

- Average voltage is just an average value of voltage across a certain time of fluctuations of positive half cycle. ✓ Full wave average value is 0 volt. ✓ (3)
- 2.8 $V_{RMS} = V_{MAx} \times 0,707 \checkmark$ = 75 × 0,707 \sigma = 53,03 V \sigma $V_{AVE} = V_{MAx} \times 0,637 \checkmark$ = 75 \times 0,637 \sigma = 47,78 V \sigma
- 2.9 Lamination is done to reduce eddy current. ✓✓
- 2.10 $F = \underbrace{p \times n}_{60} \checkmark$ $= \underbrace{2 \times 3600}_{60} \checkmark$

(3)

(2)

3

- 2.11 A transformer consists of two coils, a primary and a secondary which are supported by a core. ✓
 - These coils are electrically separated. ✓
 - The basic operation of transformer is based on mutual induction. \checkmark
 - An AC voltage is applied across the primary windings. ✓
 - A magnetic field build up and collapses in the primary coil. ✓
 - This building up and collapses of the magnetic field in the primary coll cuts the secondary windings, induces an alternating voltage.
 - This induced secondary voltage can be more or less than the supply voltage. ✓ (Any 6 x 1) (6)

(5)

4	ELECTRICAL TECHNOLOGY	(EC/NOVEMBER 2016)
2.13	 2.13.1 1. Fuse ✓ 2. Potential Transformer (PT) ✓ 3. Ground connection for safety ✓ 	(3)
2.14	Iron losses ✓ Copper losses ✓ Stray losses ✓	(Any three relevant answers) (3)
2.15	 Transmission and distribution over long distar High voltage direct current power transmissio Low voltage direct current power sources. ✓ Electrical furnaces in steel factories. ✓ 	nces. ✓ n. ✓ (Any relevant answers) (3) [50]
QUE	STION 3: SINGLE-PHASE MOTORS AND PROT	TECTIVE DEVICES
3.1	To automatically disconnect the supply in the even	ent of an overload. $\checkmark \checkmark$ (2)
3.2	Bimetal strip ✓	
	 Electronic digital overload ✓ Eutectic alloy ✓ 	(3)
3.3	To prevent the restarting of the motor after a pow	ver failure. $\checkmark \checkmark$ (2)
3.4	 The bimetal strip is made up of two different r The two metals have different thermal expans The bimetal strip bends at a given rate when In an overload condition, the heat generated bimetal strip to bend until the mechanism is trip 	netals bonded together. ✓ sion characteristics. ✓ heated. by the heater will cause the ipped, stopping the motor. ✓ (4)
3.5		C 1 (N/O) olding in

3.6 • Capacitor start motor \checkmark

N --

• Universal motor ✓

(Any two relevant answers) (2)

(4)

3.7 To ensure that there are no leakage/ ✓ short between the windings and earth. ✓

3.8

Centrigugal Switch Start Cap RunCap Source Support Sup	
power 2 0000 Start Windings	(5)

3.9	By swapping the start windings \checkmark with respect to the main windings, but NOT	
	both. ✓	(2)

- 3.10 Mechanical test ✓
 Electrical test ✓
 (2)
- 3.11 Small grinders ✓
 - Small fans ✓

QUESTION 4: SEMI-CONDUCTOR DEVICES, POWER SUPPLIES, AND AMPLIFIERS

4.1 Diode must be removed from the circuit before testing. \checkmark • Diode should be tested in both directions and it should only give a reading • in one direction and it is acceptable. \checkmark (2)4.2 Cut-off ✓ Active ✓ Saturation ✓ (3)4.3 +V OF firing conducting angle angle (5)

(6)

(2)

[30]

- 4.5 During the night:
 - 1. The resistance of the LDR is high. \checkmark
 - 2. Therefore V_{LDR} is high. ✓
 - 3. But $V_{BE} = V_{LDR}$ so the $V_{BE} \ge 0.6 V$.
 - 4. Transistor will be switched on maximum. \checkmark
 - 5. Maximum current flows through the LED and the transistor. \checkmark
 - 6. The LED will be on. ✓

(6)

(2)

4.6 It needs a continually changing magnetic field to cut the windings and induce a current. ✓✓

<u>6</u>

4.8

4.8.1	12 V ✓	(1)
4.8.2	7,7 mA ✓	(1)

4.8.3
$$Igain = \frac{\Delta Ic}{\Delta Ib} \checkmark$$
$$= \frac{7.7 \text{ mA} - 2 \text{ mA}}{80 \ \mu\text{A} - 20 \ \mu\text{A}}$$

- 4.9 Common base ✓
 - Common emitter ✓
 - Common collector ✓

~ -

(3)

(1)

7

- Negative feedback is when a portion of the output is fed back to the input, \checkmark 4.10 and the point at which the input and feedback signals meet there is a phase shift of 180°. ✓ (2)
- 4.11 Reduce noise and distortion at the output. ✓
 - Enables us to design for a specific gain. \checkmark •
 - Stabilises voltage gain. ✓
- 4.12 Class A \checkmark one transistor amplifies the entire input signal. \checkmark
 - Class B \checkmark one transistor only amplifies half of the input signal i.e. only the positive half cycle. \checkmark
 - Class AB✓ This fits in between the class A and class B. More than 50% but less than 100% of the input signal is amplified. \checkmark
 - Class $C\sqrt{-1}$ less than 50% of the input signal is amplified. $\sqrt{-1}$ (Any 3 x 1) (3)

[50]

(7)

(EC/NOVEMBER 2016)

QUESTION 5: RLC

5.1	CuiImp	rrent is maximum. ✓ pedance is minimum. ✓ (A	ny 2 x 1)	(2)
5.2	Imped capac	ance is the total opposition a circuit consists of resistor, induct itor offers to the flow current. $\checkmark\checkmark$	or and	(2)
5.3	5.3.1	At resonant $X_L = X_C$ $X_L = 2\pi f L \checkmark$ $= 2\pi \times 50 \times 0,0637 \checkmark$ $= 20,01 \Omega \checkmark$		(3)
5.2	5.3.2	Z = R		

5.2 5.3.2
$$Z = R$$

 $Z = 15 \Omega \checkmark$ (1)

5.4 5.4.1
$$X_{C} = \frac{1}{2\pi fC}$$

$$=\frac{1}{2\pi x \, 50 \, x \, 220 \, x \, 10^{-6}} \, \checkmark$$

$$X_{L} = 2\pi fL$$

= $2\pi \times 50 \times 75 \times 10^{-3} \checkmark$
= 23,56 $\Omega \checkmark$
$$Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}} = \sqrt{22^{2} + (23,56 - 14,47)^{2}} = 23,8 \Omega \qquad (4)$$

5.4.2
$$\cos \theta = \frac{R}{Z}$$

$$\Theta = \cos^{-1} R/Z \checkmark$$

= $\cos^{-1} (22 / 23, 8) \checkmark$
= 22,43° lagging \lambda (3)

QUESTION 6: LOGIC

6.1 The Product of Sum notation is where the Boolean expression is made up of a number of sum terms, separated by a product sign. ✓
 Q= (A + B). (A + C). (B + C) ✓

The Sum of Product notation is where the Boolean expression is made up of a number of product terms, separated by a sum sign. \checkmark Q = A.B + A.C + B.C \checkmark

6.2	А	В	С
	0	0	0
	0	0	1
	0	1	0
	0	1	1
	1	0	0
	1	0	1
	1	1	0

1

1

 $\checkmark\checkmark$

1

1

$$ABC + ABC + ABC + ABC = Q$$

$$BC (A + \overline{A}) + \overline{ABC} + ABC = Q \checkmark$$

$$BC + \overline{ABC} + ABC = Q$$

$$C (B + \overline{AB}) + ABC = Q \checkmark$$

$$C (B + \overline{AB}) + ABC = Q \checkmark$$

$$C (B + \overline{AB}) + ABC = Q \checkmark$$

$$BC + \overline{AC} + ABC = Q \checkmark$$

(10)

9

(4)

QUESTION 7: COMMUNICATIONS

- 7.1 7.1.1 1. Mixer ✓
 - 2. Local oscillator ✓
 - 3. AF amplifier \checkmark

7.1.2 FM receiver ✓

- 7.3 Foster-Seeley discriminators are sensitive to both frequency and amplitude variations, unlike some detectors. ✓ The discriminator compares the incoming FM signal against a reference signal ✓ and the difference between the two signals is the original audio signal. ✓
- 7.4 The main function is to connect transmitters and receivers to electromagnetic waves. ✓✓
- 7.5 Its unsophisticated signal can be detected with simple equipment. \checkmark
 - It uses a narrower bandwidth than FM. \checkmark
- 7.6 Amplitude modulation ✓
 - Frequency modulation \checkmark
 - Pulse modulation ✓

(3)

(3)

(2)

(2)

(3)

(1)

- [20]
- TOTAL: 200

Copyright reserved