NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2016

ELECTRICAL TECHNOLOGY MEMORANDUM

MARKS: 200

This memorandum consists of 10 pages.

QUESTION 1: OCCUPATIONAL HEALTH AND SAFETY, TOOLS AND MEASURING INSTRUMENTS

1.1 Good housekeeping will ensure a safer and better organised workshop. A safer working environment allows for better profits, higher productivity, a happier workforce and saves time.
1.2 - Failure to wear protective clothing.

- Horseplay in the workshop. \checkmark (Any two relevant answers.)
1.3 A badly planned/unorganised workshop. \checkmark (Any relevant answer.)
1.4 - To measure AC and DC voltage.
- Analyse relationship between waveforms.
- Measure the frequency of the waveforms.
1.5 - An insulation resistance tester can measure very high resistance as required by the Code of Practice.
- The voltage to be used to test insulation levels should be double the supply voltage. \checkmark

QUESTION 2: SINGLE-PHASE AC GENERATION AND SINGLE-PHASE TRANSFORMERS

2.1 - Alternating current is when the current reverses its direction at constant intervals of time.

- Direct current is when the current flows in one direction only.
2.2 Root-Mean-Square is the amount of DC that is required for producing the same heat as a AC waveform.
$2.3 \Phi=B A \checkmark$

$$
=3 \times\left(900 \times 10^{-6}\right) \checkmark
$$

$$
\begin{equation*}
=2,7 \mathrm{mWb} \checkmark \tag{3}
\end{equation*}
$$

2.4 $\quad V_{\text {AVE }}=0,637 \times V_{\text {Max }} \checkmark$

$$
=0,637 \times 16 \checkmark
$$

$$
\begin{equation*}
=10,19 \vee \checkmark \tag{3}
\end{equation*}
$$

2.5 EMF $=\mathrm{BlvSin} \theta \checkmark$

$$
\begin{align*}
& =0,08 \times 0,3 \times 50 \operatorname{Sin} 90^{\circ} \checkmark \\
& =1,2 \mathrm{~V} \checkmark \tag{3}
\end{align*}
$$

$2.6 \mathrm{~V}_{\text {RMS }}=\mathrm{V}_{\text {MAX }} \times 0,707$
$V_{\text {max }}=\frac{V_{\text {RMS }} \checkmark}{0,707}$
$=\frac{240}{0,707}$

$$
\begin{equation*}
=339,46 \vee \checkmark \tag{3}
\end{equation*}
$$

2.7 - RMS voltage is the DC voltage that will produce the same heat as equivalent AC voltage.

- Average voltage is just an average value of voltage across a certain time of fluctuations of positive half cycle. \checkmark Full wave average value is 0 volt.
$2.8 \quad V_{R M S}=V_{M A X} \times 0,707 \checkmark$
$=75 \times 0,707$
$=53,03 \mathrm{~V}$

$$
\begin{align*}
V_{A V E} & =V_{M A X} \times 0,637 \checkmark \\
& =75 \times 0,637 \checkmark \\
& =47,78 \mathrm{~V} \checkmark \tag{6}
\end{align*}
$$

2.9 Lamination is done to reduce eddy current. $\checkmark \checkmark$
2.10

$$
\begin{align*}
F & =\frac{p \times n}{60} \checkmark \tag{2}\\
& =\frac{2 \times 3600}{60} \\
& =120 \mathrm{~Hz} \tag{3}
\end{align*}
$$

2.11 - A transformer consists of two coils, a primary and a secondary which are supported by a core.

- These coils are electrically separated.
- The basic operation of transformer is based on mutual induction.
- An AC voltage is applied across the primary windings.
- A magnetic field build up and collapses in the primary coil.
- This building up and collapses of the magnetic field in the primary coil cuts the secondary windings, induces an alternating voltage.
- This induced secondary voltage can be more or less than the supply voltage.
(Any 6×1)
2.12

2.13 2.13.1 1. Fuse \checkmark

2. Potential Transformer (PT) \checkmark
3. Ground connection for safety \checkmark
2.14 Iron losses \checkmark

Copper losses \checkmark
Stray losses \checkmark
(Any three relevant answers)
2.15 - Transmission and distribution over long distances.

- High voltage direct current power transmission.
- Low voltage direct current power sources.
- Electrical furnaces in steel factories. (Any relevant answers)

QUESTION 3: SINGLE-PHASE MOTORS AND PROTECTIVE DEVICES

3.1 To automatically disconnect the supply in the event of an overload. $\checkmark \checkmark$
3.2 - Bimetal strip \checkmark

- Electronic digital overload \checkmark
- Eutectic alloy \checkmark
3.3 To prevent the restarting of the motor after a power failure. $\checkmark \checkmark$
3.4 - The bimetal strip is made up of two different metals bonded together.
- The two metals have different thermal expansion characteristics.
- The bimetal strip bends at a given rate when heated.
- In an overload condition, the heat generated by the heater will cause the bimetal strip to bend until the mechanism is tripped, stopping the motor. \checkmark
3.5

3.6 - Capacitor start motor \checkmark
- Universal motor \checkmark
(Any two relevant answers)
(2)
3.7 To ensure that there are no leakage/ \checkmark short between the windings and earth.
3.8

3.9 By swapping the start windings \checkmark with respect to the main windings, but NOT both.
3.10 • Mechanical test \checkmark
- Electrical test
3.11 - Small grinders \checkmark
- Small fans \checkmark

QUESTION 4: SEMI-CONDUCTOR DEVICES, POWER SUPPLIES, AND AMPLIFIERS

4.1 - Diode must be removed from the circuit before testing. \checkmark

- Diode should be tested in both directions and it should only give a reading in one direction and it is acceptable.
(2)
4.2 - Cut-off \checkmark
- Active \checkmark
- Saturation \checkmark
(3)
4.3

4.4

4.5 During the night:

1. The resistance of the LDR is high.
2. Therefore VLDR is high.
3. But $\mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\text {LDR }}$ so the $\mathrm{V}_{\mathrm{BE}} \geq 0,6 \mathrm{~V}$.
4. Transistor will be switched on maximum.
5. Maximum current flows through the LED and the transistor.
6. The LED will be on. \checkmark
4.6 It needs a continually changing magnetic field to cut the windings and induce a current. $\checkmark \checkmark$

(8)
4.8 4.8.1 $12 \mathrm{~V} \checkmark$
4.8.2 $7,7 \mathrm{~mA} \checkmark$
4.8.3 \quad Igain $=\frac{\Delta I c}{\Delta I b} \checkmark$

$$
\begin{align*}
& =\frac{7,7 \mathrm{~mA}-2 \mathrm{~mA}}{80 \mu \mathrm{~A}-20 \mu \mathrm{~A}} \\
& =95 \tag{3}
\end{align*}
$$

$$
\text { 4.8.4 } \quad 80 \mu \mathrm{~A} \checkmark
$$

4.9 - Common base \checkmark

- Common emitter
- Common collector \checkmark
4.10 Negative feedback is when a portion of the output is fed back to the input, \checkmark and the point at which the input and feedback signals meet there is a phase shift of $180^{\circ} . \checkmark$
4.11 - Reduce noise and distortion at the output.
- Enables us to design for a specific gain.
- Stabilises voltage gain.
4.12 - Class A \checkmark - one transistor amplifies the entire input signal.
- Class B \checkmark - one transistor only amplifies half of the input signal i.e. only the positive half cycle.
- Class AB \checkmark - This fits in between the class A and class B. More than 50% but less than 100% of the input signal is amplified.
- Class C \checkmark - less than 50% of the input signal is amplified.

QUESTION 5: RLC

5.1 - Current is maximum.

- Impedance is minimum.
5.2 Impedance is the total opposition a circuit consists of resistor, inductor and capacitor offers to the flow current. $\checkmark \checkmark$
5.3 5.3.1 At resonant $X_{L}=X_{C}$

$$
\begin{align*}
X_{L} & =2 \pi f \mathrm{LL} \checkmark \\
& =2 \pi \times 50 \times 0,0637 \checkmark \\
& =20,01 \Omega \checkmark \tag{3}
\end{align*}
$$

5.2 5.3.2 $\mathrm{Z}=\mathrm{R}$

$$
\begin{equation*}
Z=15 \Omega \checkmark \tag{1}
\end{equation*}
$$

5.4 \quad 5.4.1 $\quad X_{c}=\frac{1}{2 \pi f C}$

$$
=\frac{1}{2 \pi \times 50 \times 220 \times 10^{-6}}
$$

$$
=14,47 \Omega \checkmark
$$

$$
\begin{align*}
\mathrm{X} \mathrm{~L} & =2 \pi \mathrm{fL} \\
& =2 \pi \times 50 \times 75 \times 10^{-3} \checkmark \\
& =23,56 \Omega \checkmark \\
Z & \left.=\sqrt{R^{2}+\left(X_{L}-X_{C}\right.}\right)^{2}=\sqrt{22^{2}+(23,56-14,47)^{2}}=23,8 \Omega \tag{4}
\end{align*}
$$

5.4.2 $\operatorname{Cos} \theta=\frac{R}{Z}$

$$
\begin{align*}
\Theta & =\operatorname{Cos}^{-1} R / Z \checkmark \\
& =\operatorname{Cos}^{-1}(22 / 23,8) \checkmark \\
& =22,43^{\circ} \text { lagging } \checkmark \tag{3}
\end{align*}
$$

5.4.3

QUESTION 6: LOGIC

6.1 The Product of Sum notation is where the Boolean expression is made up of a number of sum terms, separated by a product sign. $Q=(A+B) \cdot(A+C) \cdot(B+C) \checkmark$

The Sum of Product notation is where the Boolean expression is made up of a number of product terms, separated by a sum sign. \checkmark
$Q=A \cdot B+A \cdot C+B . C \checkmark$
6.2

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$
\bar{A} B C \overline{+} A B \overline{+}+A B C+A B C=Q
$$

$$
B \bar{C}(A+\bar{A})+\overline{A B C}+A B C=Q \checkmark
$$

$$
B C+A B \bar{C}+A B C=Q
$$

$$
C(B \overline{+} A \bar{B})+A B C \quad=Q \checkmark
$$

$$
C(B+A)+A B C \quad=Q
$$

$$
B C+A C^{-}+A B C \quad=Q \checkmark
$$

$$
B C+A \overline{(C}+B C) \quad=Q
$$

$$
\begin{array}{ll}
B C+A(C+B) & =Q \checkmark \\
B C+A C+A B & =Q \checkmark
\end{array}
$$

$6.3 \quad 6.3 .1$

QUESTION 7: COMMUNICATIONS
7.1 7.1.1 1. Mixer \checkmark
2. Local oscillator \checkmark
3. AF amplifier \checkmark
7.1.2 FM receiver \checkmark

7.3 Foster-Seeley discriminators are sensitive to both frequency and amplitude variations, unlike some detectors. \checkmark The discriminator compares the incoming FM signal against a reference signal \checkmark and the difference between the two signals is the original audio signal.
7.4 The main function is to connect transmitters and receivers to electromagnetic waves.
7.5 - Its unsophisticated signal can be detected with simple equipment.

- It uses a narrower bandwidth than FM. \checkmark
7.6 - Amplitude modulation \checkmark
- Frequency modulation \checkmark
- Pulse modulation \checkmark

