

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2017

ELECTRICAL TECHNOLOGY MARKING GUIDELINE

MARKS: 200

This marking guideline consists of 19 pages.

QUESTION 1: (ELECTRICAL, ELECTRONICS AND DIGITAL) **OCCUPATIONAL HEALTH AND SAFETY**

1.1	By installing machine guards, $$ barrier guards $$ and sh	ields. \checkmark	(3)
1.2	Lifting of heavy weights $$	(Any relevant answer)	(1)
1.3	Floor markings around all machinery to be clear $$ to shintended only the purpose of performing a particular tas	low that space is k. $$	(2) [6]
QUES ⁻	TION 2: (ELECTRICAL, ELECTRONICS AND DIGITA TOOLS AND MEASURING INSTRUMENTS	AL)	
2.1	Always wear eye protection. \checkmark	(Any relevant answer)	(1)
2.2	Before plugging in any power tool make sure that the po	ower is switched off. $$	(1)
2.3	Provides the knowledge of types of loads $$ and helps in during the systems operation. $$	n calculations of losses	(2)
2.4	This is the time the bonding of the wheel is liable to dise apart. $$ Therefore it is not safe to be standing in the dire that may be thrown out by centrifugal force. $$	engage and break ect path of any pieces	(2) [6]
<u></u>			

QUESTION 3: (ELECTRICAL) **DC MACHINES**

3.1	3.1.1	Armature losses = $I_A^2 \times R_A$ = 30 ² × 0,5 = 450 W $$	
		Field loss = $I_F^2 \times R_F$ = 2,5 ² × 50 = 312,5 W \checkmark	
		Copper losses = Armature loss + Field loss $$ = 450 + 312,5 $$ = 762,5 W $$	(5)
	3.1.2	Total losses = Copper losses + Rotational losses = 762,5 + 345 = 1107,5 W $$	
		Efficiency = $\frac{output}{output + losses} \times 100\%$ = $\frac{3500}{3500 + 1107.5} $ = 75,96% $$	(3)

2

3.2	- Armature current establishes a magnetic field which is called the armature flux. The effect of armature flux on the main field is called the armature reaction. $$	
	- The armature reaction demagnetises the main field and cross magnetises the main field. \checkmark	(2)
3.3	A DC machine is a device that deals in the conversion of electrical $$ and mechanical energy. $$	(2)
3.4	To ensure that the motor will continue to run correctly when needed. $\sqrt{}$	(2)
3.5	 Increase brush contact resistance √ Axis of the brushes needs to be carefully adjusted depending on the type of load. (brush shifting) √ Increased reluctance between the pole tips and the segment surface √ Interpoles 	
	Compensating windings (Any 3)	(3)
3.6	- An Electric motor is a machine that converts electrical energy into mechanical energy. \checkmark	
	- A generator is a machine that converts mechanical energy into electrical energy. \checkmark	(2)
3.7	Voltage drop test are used to find out shorted winding. In the test 240 V AC is applied to the field leads. $$ The voltage drop across each field pole is measured with a voltmeter, $$ motor is correct all voltage drops should be equal. $$	(3)
3.8	Lap winding: Number of parallel paths = $2p $ = 2×3 = 6	
	Number of conductors per path = $\frac{480}{6}$ = 80 conductors $$	(4) [26]
QUES	TION 4: (ELECTRICAL) SINGLE-PHASE AC GENERATION	נצטן
4.1	$V_{MAX} = 2\beta lv = 2 \times 120 \times 10^{-3} \times 6 \times 10^{-2} \times 80 = 1,15 V $	(3)
4.2	$V_{AVE} = 0,637 \times V_{PK}$ $V_{PK} = \frac{V_{AVE}}{0,637} $ $= \frac{9,54}{0,637} $ = 14,98 V	(3)
4.3	$f = \frac{1}{\sqrt{2}}$	

4.3
$$f = \frac{1}{T} \sqrt{\frac{1}{40 \times 10^{-3}}} \sqrt{\frac{1}{40 \times 10^{-3}}} \sqrt{\frac{1}{25}}$$
 Hz $\sqrt{\frac{1}{25}}$ (3)

Copyright reserved

Please turn over

4.4	$E = \frac{\Delta \phi}{\Delta T} $ = $\frac{1500 \times 10^{-3}}{0.3} $ = $5 V $	(3)
4.5	$E = \frac{\Delta \emptyset}{\Delta T}$ $\Delta \emptyset = E \times \Delta T $ $= 1.5 \times 0.2 $ = 0.3 Wb	(3)
4.6	4.6.1	
	one cycle one cycle	(2) (1) (1)
4.7	$\beta = \frac{\phi}{A}$ $\phi = \beta \times A $ $= 600 \times 1.5 \times 10^{-4} $ = 90 mWb	(3)
4.8	$f = n \times p$ = $\frac{2400}{60} \times 2 $ = 80 Hz $$	(2)
4.9	$V_{MAX} = 2\beta lv$ = 2 × 12 × 10 ⁻³ × 2 × 20 \checkmark = 0,96 V \checkmark	(2) [26]
QUES ⁻	TION 5: (ELECTRICAL) SINGLE-PHASE TRANSFORMERS	[20]
5.1	5.1.1 $\frac{V_S}{V_P} = \frac{N_S}{N_P}$ $V = \frac{N_S \times V_P}{V_P} \sqrt{\frac{N_S \times V_P}{N_P}}$	

$$V_S = \frac{N_S \times V_P}{N_P} \sqrt{\frac{75 \times 160}{200}} \sqrt{\frac{60}{200}} = 60 \text{ V} \sqrt{\frac{100}{200}}$$

Copyright reserved

Please turn over

5.2

5.6 When the current flows in a wire it creates a surrounding magnetic field which does not want to change its condition. $\sqrt{}$ This built-up in feature is called backerf. $\sqrt{}$

(2) **[26]**

QUESTION 6: (ELECTRICAL, ELECTRONICS AND DIGITAL) RLC-CIRCUITS

6.1
$$X_{L} = 2\pi f L \sqrt{2}$$

= 2. \pi. 50.0,5 \sqrt{2}
= 157,08 \Omega \sqrt{3}

$$X_{C} = \frac{1}{2\pi f C}$$

$$C = \frac{1}{2\pi f X_{C}} \sqrt{\frac{1}{2\pi f X_{C}}}$$

$$= \frac{1}{2\pi 300.3180} \sqrt{\frac{1}{2\pi 300.3180}}$$

$$= 166,83 n F \sqrt{3}$$

6.3.1
$$Z = \sqrt{R^2 + (X_C - X_L)^2} \sqrt{2}$$
$$= \sqrt{600^2 + (665 - 37,7)^2} \sqrt{2}$$
$$= 868,05 \,\Omega \sqrt{2}$$
(3)

6.3.2 At resonant frequency point the two reactance are identical in size $\sqrt{}$ but exactly opposite to each other in direction making $X_{L} = -X_{C}$. $\sqrt{}$ At this point they cancel each other's effect and the only resistance left in the circuit is the resistance of the resistor R $\sqrt{}$ where the component impedance will be equal to resistance. $\sqrt{}$ (4)

(5)

(2)

6.4 When the frequency increases the inductive reactance also increases $\sqrt{}$ because inductive reactance is directly proportional to frequency $\sqrt{}$

6.5
$$f_r = \frac{1}{2\pi\sqrt{LC}} \sqrt{\frac{1}{2\pi\sqrt{LC}}} = \frac{1}{2\pi\sqrt{5\times10^{-3}\times50\times10^{-9}}} \sqrt{\frac{1}{2\pi\sqrt{5\times10^{-3}\times50\times10^{-9}}}} = 10,07 \text{ Hz} \sqrt{\frac{3}{2\pi\sqrt{5}}}$$

6.6 Number of cycles completed by a waveform in one second $\sqrt{}$ [24]

(ELECTRICAL) **QUESTION 7: CONTROL DEVICES**

L Ν HRC fuses go \cap \sim С ŌΝ Stop Q off E thermal heater 🗸 overload elements elay Motor

7.2	 DOL acts as a switch that turn the motor on and off. √ Offers over current protection. √ (Any 2 relevant answers) 	(2)
7.3	Polyfuse or PTC or resettable fuse $$	(1)
7.4	It is very useful in protecting against damage caused by over current surges $\!$	(2)
7.5	 Overload √ Short circuit √ Ground-earth fault √ 	(3)
7.6	The size $$ and shape of the bi-metallic strip $$ and the material it is made from determine the current capacity of the circuit breaker. $$	(3)
7.7	As the voltage falls the load on motor will affect its torque, increasing its strain and its overload state. $\sqrt{1}$ If the motor's torque falls below that required by the load this could lead to the motor stalling $\sqrt{1}$ and the only thing it can produce is heat as it overstrains to try to continue to turn. $\sqrt{1}$	(3)
7.8	 A drop in supply could cause an increase in motor torque as it tries to maintain its operation under load. √ A sudden restart of the motor could cause an excessive in rush of current, exceeding the motor's rated value. √ 	(2)
7.9	Electronic overload relays use electronic sensing making their greatest benefit the fact that their heater-less design reduces the need for heating coils in bimetallic sensing devices $$ and so reduces installation cost. $$ The heater-less design also makes the electronic relay insensitive to any surrounding temperature rises that could cause unnecessary, nuisance tripping. $$	(3)

(3)

(8)

- 7.10 Thermal √ .
- Magnetic $\sqrt{}$ • Electronic $\sqrt{}$ (3)
- Overload condition $\sqrt{}$ 7.11
 - Short circuit condition $\sqrt{}$
- **QUESTION 8:** (ELECTRICAL) SINGLE-PHASE MOTORS

8.1

- 8.2 Once the start circuit had done its job the high-current winding needs to be removed from the circuit. $\sqrt{}$ The centrifugal switch does this by disconnecting it from the circuit leaving the running winding to carry the load. \checkmark **OR** Disconnects the start winding and starting capacitor from the supply $\sqrt{}$ once the motor reaches 75% of full speed. $\sqrt{}$
- 8.3 Low cost $\sqrt{}$
 - Quiet √ •
 - Long lasting $\sqrt{}$ •
 - Trouble free $\sqrt{}$ •
 - Cheaper
 - Robust
- A synchronous motor is one that's speed is synchronous with the frequency of 8.4 the main supply, $\sqrt{}$ that is, it spins at exactly the same rate as the incoming frequency. $\sqrt{}$
- 8.5 Reversing the motor's direction requires the changing of direction of the rotating magnetic field created by the two stator windings. $\sqrt{1}$ This can be done by reversing the direction of either the starting or running windings. $\sqrt{}$
- 8.6 To make a single-phase induction motor into a split phase motor requires a second pair of coils to be added. $\sqrt{\sqrt{}}$

(10)

(2)

(Any 4) (4)

(2)

(2)

(2)

(2) [32]

- 8.7 A universal motor is able to operate on an AC supply because of the way it is wired, with its two stator field coils connected in series $\sqrt{}$ with the rotor windings through its commutator $\sqrt{}$
- 8.8 Have high starting torque √
 Quiet in operation √
- 8.9 Vacuum cleaner $\sqrt{}$ • Electric hand drills $\sqrt{}$ (2) 8.10 The second pair of coils is positioned at right angle to the first pair. $\sqrt{\sqrt{}}$ (2)

QUESTION 9: (ELECTRICAL) POWER SUPPLIES

9.1

- 9.2 The capacitor passes AC voltage while at the same time blocking DC voltage. $\sqrt{}$ The inductor passes DC voltage while at the same time blocking AC voltage. $\sqrt{}$
- 9.3 The electronic power supply converts an AC mains supply to a DC supply of a lower voltage. $\sqrt[3]{}$
- 9.4 On each cycle of input the diode allows pulses of charge to enter the capacitor. $\sqrt{}$ During the period in each cycle that the diodes are off, the capacitor discharges its energy into the load, keeping the supply constant for the full cycle. $\sqrt{}$

9.5

9.6 π filter $\sqrt{}$

Copyright reserved

Please turn over

9

(2)

(2)

[30]

(2)

(2)

(3)

(1)

(EC/NOVEMBER 2017)

(3)

(4)

(2)

9.7	9.7.1	$E_{PK} = \frac{E_{RMS}}{0.707} \sqrt{\frac{57.5}{0.707}} \sqrt{\frac{57.5}{0.707}}} \sqrt{\frac{57.5}{0.707}} \sqrt{\frac{57.5}{0.707}}} \sqrt{\frac{57.5}{0.707}} \sqrt{\frac{57.5}{0.707}}$	
		= 81,33 V	(3)
	9.7.2	$V_{PK} = E_{PK} - V_D \\ = 81,33 - 0,65 \\ = 80,68 V $	(3)

9.7.3
$$V_{AVE} = 0.637 \times V_{PK} \sqrt{}$$

= 0.637 × 80.68 $\sqrt{}$
= 51.39 V $\sqrt{}$ (3)
[24]

QUESTION 10: (ELECTRONIC AND DIGITAL) WAVE FORMS

- 10.1 10.1.1 This is the time between the 50% $\sqrt{}$ amplitude points on both the rising $\sqrt{}$ and the falling edges of the pulse. $\sqrt{}$
 - 10.1.2 Fall time, this is the time a falling pulse takes to make a change from the higher state 'on' $\sqrt{}$ to the lower state 'off'. $\sqrt{}$ It is measured between the 10% and 90% points of the completed pulse. $\sqrt{}$ (3)

10.2 10.2.1
$$f = \frac{1}{T}$$

= $\frac{300}{60} \sqrt{}$
= $5 Hz \sqrt{}$ (2)

10.2.2
$$T = \frac{1}{f} \sqrt{2}$$
$$= \frac{1}{5} \sqrt{2}$$
$$= 0.2 Hz \sqrt{2}$$
(3)

- 10.3 The clamping circuit actually binds the upper or lower $\sqrt{}$ extremes of a waveform to a fixed DC voltage level. $\sqrt{}$ When unbiased, clamping circuits will fix $\sqrt{}$ the voltage lower limit $\sqrt{}$ (or upper limit, in the case of negative clampers) to 0 volt.
- 10.4 10.4.1 Sine wave (2) 10.4.2 Ramp wave (2) 10.4.3 Saw tooth wave

(3)

(2) [**26**]

(3)

(3)

QUESTION 11: (ELECTRONICS AND DIGITAL) SEMICONDUCTOR DEVICES

- 11.1 11.1.1 During the forward bias the positive terminal of the battery pumps holes into the P-region of the diode. $\sqrt{}$ The negative terminal pumps electrons into the N-region. $\sqrt{}$ As the voltage increases, the depletion region will become thinner and thinner and the diode will offer less and less resistance and start to conduct. $\sqrt{}$
 - 11.1.2 In reverse bias the P-type material is connected to the negative terminal and the N-type material is connected to the positive terminal of the battery. $\sqrt{1}$ In this condition, the holes in the P-type are filled by electrons from the battery. $\sqrt{1}$ The electrons in the N-type material are sucked out of the diode by the positive of terminal of the battery, so the diode is depleted of charge and it will not conduct. $\sqrt{1}$
- 11.2 11.2.1

11.2.2

(3)

(3)

(3)

11.3 A DIAC is commonly used to trigger a TRIAC $\sqrt{}$ as it breaks down at a precise voltage $\sqrt{}$ so giving the TRAIC a precise triggering voltage in both half-cycles. $\sqrt{}$

Copyright reserved

(10)

11.5	A zener diode has a unique reverse biased operating characteristic $$ in that it blocks any flow of current when under low reverse voltage $$ but as soon as the voltage rises to reach its zener breakdown it breaks down $$ and allow s current to flow in the reverse direction without any damage to itself. $$	(4)
11.6	Voltage regulator $$	(1)
11.7	TRIAC is able to conduct in both direction $$	(1)
11.8	 SCR cannot switch by itself It can conduct in one direction 	(2)
11.9	Solid-state devices are devices that are built entirely from solid materials $$ and in which the electrons or other charge carriers are confined entirely within the solid material. $$	(2)
11.10	Holding current is the minimum current $$ that must flow to prevent the SCR from switching off. $$	(2)
11.11	Apply a voltage across the TRIAC in either polarity, $$ and then apply a pulse to the gate of either polarity. $$	(2)
11.12	1. Forward conduction $$ 2. Gate pulse $$ 3. Reverse conduction $$ 4. $V_{BO} $ 5. IF $$ 6. IH $$ 7. +V $$	(7)
11.13	Silicon Control Rectifier $$	(1)
11.14	Phosphorous, arsenic or antimony $$ (Any 1)	(1) [48]

QUESTION 12: (ELECTRONICS) POWER SUPPLIES

12.1

12.4

- 12.2 The capacitor passes AC voltage while at the same time blocking DC voltage. $\sqrt{}$ The inductor passes DC voltage while at the same time blocking AC voltage. $\sqrt{}$ (2)
- 12.3 The electronic power supply converts an AC mains supply to a DC supply of a lower voltage. $\sqrt[]{}$

Т

12.5.3
$$V_{AVE} = 0,637 \times V_{PK} \sqrt{}$$

= 0,637 × 80,68 $\sqrt{}$
= 51,39 V $\sqrt{}$ (3)
[20]

(EC/NOVEMBER 2017)

(3)

(2)

(3)

(6)

(2)

(2)

QUESTION 13 (ELECTRONICS) AMPLIFIERS

- 13.1 Common Emitter $\sqrt{}$
 - Common Collector $\sqrt{}$
 - Common Base $\sqrt{}$

- 13.3 It suffers from thermal instability \sqrt{a} as it relies solely on the gain value of the single transistor for which it is designed. $\sqrt{}$
- 13.4 Improved stability against changes of temperature. $\sqrt{}$
 - More reliable and constant voltage gain. $\sqrt{}$
 - Decrease distortion of the amplifier. $\sqrt{}$
- 13.5 Biasing is used in amplifier design because it establishes the correct operating point $\sqrt{}$ of the transistor amplifier ready to receive signals, $\sqrt{}$ thereby reducing any distortion $\sqrt{}$ to the output signal. $\sqrt{}$ DC biasing refers to the application of the correct external voltages $\sqrt{}$ to establish an operating point on the characteristic output curve. $\sqrt{}$
- 13.6 An amplifier is an electronic device that increases $\sqrt{}$ the power of a smaller input signal. $\sqrt{}$

13.7 13.7.1
$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

= $\frac{12 - 0.6}{285 k\Omega} \sqrt{\frac{12 - 0.6}{285 k\Omega}}$
= 40 $\mu A \sqrt{\frac{12}{285 k\Omega}}$

13.7.2
$$\beta = \frac{I_C}{I_B}$$
$$I_C = \beta \times I_B \sqrt{10^{-6}}$$
$$= 100 \times 40 \times 10^{-6} \sqrt{10^{-6}}$$
$$= 4 \ mA \sqrt{10^{-6}}$$

13.8 The purpose of a variable resistor is to act as a potential divider $\sqrt{}$ that is able to hold the voltage on the base terminal $\sqrt{}$ at a fixed value which will not vary under any conditions. $\sqrt{}$

QUESTION 14: (ELECTRONICS AND DIGITAL) SENSORS AND TRANSDUCERS

- 14.1 This detector relies on the oxidation of a thin film of heated metal oxide; $\sqrt{}$ deposited on a silicon slice when it comes into contact with a gas. $\sqrt{}$ This oxidation changes the metal resistance. $\sqrt{}$
- 14.2

- 14.3 It is a device that changes energy from one form into another. $\sqrt{}$
- (1)

(4)

(1)

(3) [**12**]

(3)

- 14.4 Piezo Electric Effect $\sqrt{}$
- 14.5 When the load is applied to the body of a resistor load cell the member deforms creating a strain at those locations due to the stress applied. \sqrt{As} a result two of the strain gauges are in compression \sqrt{and} the other two are in tension. These four strain sensors are used as the four arms of a Wheatstone Bridge. \sqrt{As}

QUESTION 15: (ELECTRONICS AND DIGITAL) COMMUNICATION SYSTEMS

- 15.1 The increase in amplitude of an oscillation in a mechanical or electrical system, $\sqrt{}$ under the influence of an external periodic impulse of similar frequency to the original vibration. $\sqrt{}$
- 15.2 Capacitor $\sqrt{}$
 - Inductor $\sqrt{}$

(2)

(2)

(2)

- 15.3 It constantly adjust its output frequency $\sqrt{}$ to match the frequency of the input signal. $\sqrt{}$
- 15.4 A regenerative receiver is one that that feeds the output from an amplifier back onto it over and over again. $\sqrt{1}$ If this is done in such a way as to promote positive feedback, $\sqrt{1}$ the circuit has the effect of turning into a high gain amplifier $\sqrt{1}$ as well as giving the circuit added properties. $\sqrt{1}$ This is used in the RF amplifier stage of receivers giving them name of regenerative receivers. $\sqrt{1}$ (5)

- 15.6 FSK is a method that enables the transmission digital pulse signal $\sqrt{}$ using traditional radio transmitting and receiving method. $\sqrt{}$
- 15.7 1. FM Oscillator $\sqrt{}$
 - 2. Frequency multiplier $\sqrt{}$
 - 3. RF amplifier $\sqrt{}$
- 15.8 Narrower bandwidth: $\sqrt{}$ Making way for more channels to be accommodated. $\sqrt{}$
 - Noise reduction: \sqrt{A} As the transmission uses only one half the bandwidth of a normal system the thermal noise power is also reduced to one half of a double side band system. \sqrt{A}

(4) [**26**]

(2)

QUESTION 16:	(DIGITAL)
	LOGIC

16.1 16.1.1 AND Function $\sqrt{}$

16.1.2	Α	В	Х	
	0	0	0	~
	0	1	0	~
	1	0	0	~
	1	1	1	~

- 16.1.3 $X \sqrt{= A.B} \sqrt{}$ (2)

16.1.4

$$\begin{array}{c} A \xrightarrow{\checkmark} \\ B \xrightarrow{} \\ \end{array} \end{array} \xrightarrow{} X \xrightarrow{\checkmark}$$
 (2)

16.2 16.2.1
$$Q_1 \sqrt{=} A.B \sqrt{}$$
 (2)

16.2.2
$$Q \checkmark = \overline{A} \cdot \overline{B} \checkmark$$
 (2)

16.2.3
$$Q \checkmark = \overline{A} \cdot \overline{B} \checkmark + A \cdot B \checkmark$$
 (3)

~	ĀB	AB	AB	АĒ	
C	\wedge		J	\searrow	
С	V				
'					+ 1

+ 1	mark for each 1 correctly placed	
+ 1	mark for each grouping	

16.3.2
$$Q = \overline{A}\overline{B} \checkmark + A\overline{C} \checkmark$$
 (2)

16.3.3

(1)

(8)

(4)

16.4 16.4.1

Inp	Inputs		Inputs Output			
Α	В	S	Со	~		
0	0	0	0			
0	1	1	0			
1	0	1	0	~		
1	1	0	1			

(2)

(2)

16.4.2

$$S = A \oplus B^{\checkmark}$$

Co = A.B \checkmark

16.4.3

(4)

- 16.5 Low cost $\sqrt{}$
 - Ease of use $\sqrt{}$

(2) **[40]**

QUESTION 17: (DIGITAL) POWER SUPPLIES

- 17.2 The capacitor passes AC voltage while at the same time blocking DC voltage. $\sqrt{}$ The inductor passes DC voltage while at the same time blocking AC voltage. $\sqrt{}$ (2)
- 17.3 The electronic power supply converts an AC mains supply to a DC supply of a lower voltage. $\sqrt{\sqrt{}}$ (2)

17.4

17.5 π filter circuit $\sqrt{}$

(1) **[12]**

(3)

TOTAL: 200

(4)