GRADE 11

NOVEMBER 2017

ELECTRICAL TECHNOLOGY MARKING GUIDELINE

MARKS: 200

This marking guideline consists of 19 pages.

QUESTION 1: (ELECTRICAL, ELECTRONICS AND DIGITAL) OCCUPATIONAL HEALTH AND SAFETY

1.1 By installing machine guards, $\sqrt{ }$ barrier guards $\sqrt{ }$ and shields. $\sqrt{ }$
1.2 Lifting of heavy weights $\sqrt{ }$
(Any relevant answer)
1.3 Floor markings around all machinery to be clear $\sqrt{ }$ to show that space is intended only the purpose of performing a particular task. $\sqrt{ }$

QUESTION 2: (ELECTRICAL, ELECTRONICS AND DIGITAL) TOOLS AND MEASURING INSTRUMENTS

2.1 Always wear eye protection. $\sqrt{ }$
(Any relevant answer)
2.2 Before plugging in any power tool make sure that the power is switched off. $\sqrt{ }$
2.3 Provides the knowledge of types of loads $\sqrt{ }$ and helps in calculations of losses during the systems operation. $\sqrt{ }$
2.4 This is the time the bonding of the wheel is liable to disengage and break apart. $\sqrt{ }$ Therefore it is not safe to be standing in the direct path of any pieces that may be thrown out by centrifugal force. $\sqrt{ }$

QUESTION 3: (ELECTRICAL)

 DC MACHINES3.1 3.1.1 \quad Armature losses $=I_{A}{ }^{2} \times R_{A}$

$$
\begin{aligned}
& =30^{2} \times 0,5 \\
& =450 \mathrm{~W}
\end{aligned}
$$

Field loss $=I_{F}{ }^{2} \times R_{F}$

$$
=2,5^{2} \times 50
$$

$$
=312,5 \mathrm{~W} V
$$

Copper losses =Armature loss + Field loss $\sqrt{ }$
$=450+312,5 \mathrm{~V}$

$$
\begin{equation*}
=762,5 \mathrm{~W} \tag{5}
\end{equation*}
$$

3.1.2 Total losses = Copper losses + Rotational losses

$$
\begin{aligned}
& =762,5+345 \\
& =1107,5 \mathrm{~W} \mathrm{~V}
\end{aligned}
$$

$$
\begin{align*}
\text { Efficiency } & =\frac{\text { output }}{\text { output }+ \text { losses }} \times 100 \% \\
& =\frac{3500}{3500+1107,5} \sqrt{ } \\
& =75,96 \% \mathrm{~V} \tag{3}
\end{align*}
$$

3.2 - Armature current establishes a magnetic field which is called the armature flux. The effect of armature flux on the main field is called the armature reaction. V

- The armature reaction demagnetises the main field and cross magnetises the main field. $\sqrt{ }$
3.3 A DC machine is a device that deals in the conversion of electrical $\sqrt{ }$ and mechanical energy. $\sqrt{ }$
3.4 To ensure that the motor will continue to run correctly when needed.
$\sqrt{ } \sqrt{ }$
3.5 - Increase brush contact resistance $\sqrt{ }$
- Axis of the brushes needs to be carefully adjusted depending on the type of load. (brush shifting) $\sqrt{ }$
- Increased reluctance between the pole tips and the segment surface $\sqrt{ }$
- Interpoles
- Compensating windings
(Any 3)
3.6 - An Electric motor is a machine that converts electrical energy into mechanical energy. $\sqrt{ }$
- A generator is a machine that converts mechanical energy into electrical energy. $\sqrt{ }$
3.7 Voltage drop test are used to find out shorted winding. In the test 240 V AC is applied to the field leads. $\sqrt{ }$ The voltage drop across each field pole is measured with a voltmeter, $\sqrt{ }$ motor is correct all voltage drops should be equal. $\sqrt{ }$
3.8 Lap winding: Number of parallel paths $=2 p \sqrt{ }$

$$
\begin{aligned}
& =2 \times 3 \\
& =6 \mathrm{~V}
\end{aligned}
$$

Number of conductors per path $=\frac{480}{6} \sqrt{ }$

$$
\begin{equation*}
=80 \text { conductors } \sqrt{ } \tag{4}
\end{equation*}
$$

QUESTION 4: (ELECTRICAL)

SINGLE-PHASE AC GENERATION
4.1 $\quad V_{M A X}=2 \beta l v \sqrt{ }$

$$
\begin{align*}
& =2 \times 120 \times 10^{-3} \times 6 \times 10^{-2} \times 80 \vee \\
& =1,15 \mathrm{~V} V \tag{3}
\end{align*}
$$

$4.2 \quad V_{A V E}=0,637 \times V_{P K}$

$$
\begin{align*}
V_{P K} & =\frac{V_{A V E}}{0,637} \sqrt{ } \\
& =\frac{9,54}{0,637} \sqrt{ } \\
& =14,98 \mathrm{~V} \sqrt{ } \tag{3}
\end{align*}
$$

$4.3 \quad \begin{aligned} f & =\frac{1}{T} \sqrt{ } \\ & =\frac{1}{40 \times 10^{-3}} \sqrt{ } \\ & =25 \mathrm{~Hz} \sqrt{ }\end{aligned}$
$4.4 \quad E=\frac{\Delta \emptyset}{\Delta T} \sqrt{ }$

$$
\begin{align*}
& =\frac{\Delta I}{0,3} \times 10^{-3} \\
& =5 \mathrm{~V} \tag{3}
\end{align*}
$$

4.5

$$
\begin{align*}
& E=\frac{\Delta \emptyset}{\Delta T} \\
& \begin{aligned}
\Delta \emptyset & =E \times \Delta T \sqrt{ } \\
& =1,5 \times 0,2 \sqrt{ } \\
& =0,3 \mathrm{~Wb} V
\end{aligned}
\end{align*}
$$

$4.6 \quad 4.6 .1$

4.7

$$
\begin{align*}
\beta & =\frac{\emptyset}{A} \tag{1}\\
\emptyset & =\beta \times A \sqrt{ } \\
& =600 \times 1,5 \times 10^{-4} \sqrt{ } \\
& =90 \mathrm{mWb} V \tag{3}
\end{align*}
$$

$4.8 \quad f=n \times p$

$$
\begin{align*}
& =\frac{2400}{60} \times 2 \sqrt{ } \\
& =80 \mathrm{~Hz} \tag{2}
\end{align*}
$$

$4.9 \quad V_{M A X}=2 \beta l v$

$$
=2 \times 12 \times 10^{-3} \times 2 \times 20 \sqrt{ }
$$

$$
\begin{equation*}
=0,96 \mathrm{~V} V \tag{2}
\end{equation*}
$$

QUESTION 5: (ELECTRICAL)

SINGLE-PHASE TRANSFORMERS
5.1 \quad 5.1.1 $\quad \frac{V_{S}}{V_{P}}=\frac{N_{S}}{N_{P}}$

$$
\begin{align*}
V_{S} & =\frac{N_{S} \times V_{P}}{N_{P}} \sqrt{ } \\
& =\frac{75 \times 160}{200} \sqrt{ } \\
& =60 \mathrm{~V} \sqrt{ } \tag{3}
\end{align*}
$$

$$
\text { 5.1.2 } \begin{align*}
\frac{I_{S}}{I_{P}} & =\frac{N_{P}}{N_{S}} \\
I_{S} & =\frac{N_{P} \times I_{P}}{N_{S}} \sqrt{ } \\
& =\frac{200 \times 0,3}{75} \sqrt{ } \\
& =0,8 A \text { or } 800 \mathrm{~mA} \sqrt{ } \tag{3}
\end{align*}
$$

5.2

AC Generator

5.4 5.4.1 Voltage instrument transformer $\sqrt{ }$
5.4.2 1. Load $\sqrt{ }$
2. Potential transformer $\sqrt{ }$
3. AC voltmeter $\sqrt{ }$
4. Grounded for safety $\sqrt{ }$
5. High voltage $A C \sqrt{ }$
5.5 5.5.1 $\quad F_{m}=H \times l \sqrt{ } \quad$ where $I=2 \pi \mathrm{r}$

$$
=4000 \times 2 \times \pi \times 0,008 \mathrm{~V}
$$

$$
\begin{equation*}
=201,06 \text { A-turns } \sqrt{ } \tag{3}
\end{equation*}
$$

5.5.2 $\quad I=\frac{E_{m}}{N} V$
$=\frac{201,06}{600} \mathrm{~V}$
$=0,34 \mathrm{~A} \mathrm{~V}$
5.6 When the current flows in a wire it creates a surrounding magnetic field which does not want to change its condition. $\sqrt{ }$ This built-up in feature is called backemf. $\sqrt{ }$

QUESTION 6: (ELECTRICAL, ELECTRONICS AND DIGITAL) RLC-CIRCUITS

$6.1 \quad X_{L}=2 \pi f L \sqrt{ }$

$$
\begin{align*}
& =2 . \pi \cdot 50.0,5 \sqrt{ } \\
& =157,08 \Omega \sqrt{ } \tag{3}
\end{align*}
$$

6.2 $\quad X_{C}=\frac{1}{2 \pi f C}$

$$
C=\frac{1}{2 \pi f X_{C}} \sqrt{ }
$$

$$
=\frac{1}{2 \cdot \pi \cdot 300.3180} \downarrow
$$

$$
\begin{equation*}
=166,83 n F V \tag{3}
\end{equation*}
$$

$6.3 \quad$ 6.3.1 $\quad Z=\sqrt{R^{2}+\left(X_{C}-X_{L}\right)^{2}} \sqrt{ }$

$$
\begin{align*}
& =\sqrt{600^{2}+(665-37,7)^{2}} \sqrt{ } \\
& =868,05 \Omega \sqrt{ } \tag{3}
\end{align*}
$$

6.3.2 At resonant frequency point the two reactance are identical in size $\sqrt{ }$ but exactly opposite to each other in direction making $X_{L}=-X_{c} . \sqrt{ }$ At this point they cancel each other's effect and the only resistance left in the circuit is the resistance of the resistor $R \sqrt{ }$ where the component impedance will be equal to resistance. $\sqrt{ }$
6.3.3

6.4 When the frequency increases the inductive reactance also increases $\sqrt{ }$ because inductive reactance is directly proportional to frequency $\sqrt{ }$
$6.5 \quad f_{r}=\frac{1}{2 \pi \sqrt{L C}} \sqrt{ }$
$=\frac{1}{2 . \pi \sqrt{5 \times 10^{-3} \times 50 \times 10^{-9}}} \sqrt{ }$
$=10,07 \mathrm{~Hz} \sqrt{ }$
6.6 Number of cycles completed by a waveform in one second $\sqrt{ }$

QUESTION 7: (ELECTRICAL)

 CONTROL DEVICES7.1

7.2 - DOL acts as a switch that turn the motor on and off. $\sqrt{ }$

- Offers over current protection. $\sqrt{ }$
7.3 Polyfuse or PTC or resettable fuse $\sqrt{ }$
7.4 It is very useful in protecting against damage caused by over current surges $\sqrt{ }$ as well as over temperature faults. $\sqrt{ }$
7.5 • Overload $\sqrt{ }$
- Short circuit $\sqrt{ }$
- Ground-earth fault $\sqrt{ }$
7.6 The size $\sqrt{ }$ and shape of the bi-metallic strip $\sqrt{ }$ and the material it is made from determine the current capacity of the circuit breaker. $\sqrt{ }$
7.7 As the voltage falls the load on motor will affect its torque, increasing its strain and its overload state. $\sqrt{ }$ If the motor's torque falls below that required by the load this could lead to the motor stalling $\sqrt{ }$ and the only thing it can produce is heat as it overstrains to try to continue to turn. $\sqrt{ }$
7.8 - A drop in supply could cause an increase in motor torque as it tries to maintain its operation under load. $\sqrt{ }$
- A sudden restart of the motor could cause an excessive in rush of current, exceeding the motor's rated value. $\sqrt{ }$
7.9 Electronic overload relays use electronic sensing making their greatest benefit the fact that their heater-less design reduces the need for heating coils in bimetallic sensing devices $\sqrt{ }$ and so reduces installation cost. $\sqrt{ }$ The heaterless design also makes the electronic relay insensitive to any surrounding temperature rises that could cause unnecessary, nuisance tripping.
7.10 - Thermal $\sqrt{ }$
- Magnetic $\sqrt{ }$
- Electronic $\sqrt{ }$
7.11 - Overload condition $\sqrt{ }$
- Short circuit condition $\sqrt{ }$

QUESTION 8: (ELECTRICAL)

 SINGLE-PHASE MOTORS8.1

8.2 Once the start circuit had done its job the high-current winding needs to be removed from the circuit. $\sqrt{ }$ The centrifugal switch does this by disconnecting it from the circuit leaving the running winding to carry the load. $\sqrt{ }$
OR Disconnects the start winding and starting capacitor from the supply $\sqrt{ }$ once the motor reaches 75% of full speed. $\sqrt{ }$
8.3 - Low cost $\sqrt{ }$

- Quiet $\sqrt{ }$
- Long lasting $\sqrt{ }$
- Trouble free $\sqrt{ }$
- Cheaper
- Robust
8.4 A synchronous motor is one that's speed is synchronous with the frequency of the main supply, $\sqrt{ }$ that is, it spins at exactly the same rate as the incoming frequency. $\sqrt{ }$
8.5 Reversing the motor's direction requires the changing of direction of the rotating magnetic field created by the two stator windings. $\sqrt{ }$ This can be done by reversing the direction of either the starting or running windings. $\sqrt{ }$
8.6 To make a single-phase induction motor into a split phase motor requires a second pair of coils to be added. $\sqrt{ } \sqrt{ }$
8.7 A universal motor is able to operate on an AC supply because of the way it is wired, with its two stator field coils connected in series V with the rotor windings through its commutator $\sqrt{ }$
8.8 - Have high starting torque $\sqrt{ }$
- Quiet in operation $\sqrt{ }$
8.9 - Vacuum cleaner $\sqrt{ }$
- Electric hand drills $\sqrt{ }$
8.10 The second pair of coils is positioned at right angle to the first pair. $\sqrt{ } \sqrt{ }$

QUESTION 9: (ELECTRICAL)

POWER SUPPLIES
9.1

9.2 The capacitor passes AC voltage while at the same time blocking DC voltage. $\sqrt{ }$ The inductor passes DC voltage while at the same time blocking AC voltage. $\sqrt{ }$
9.3 The electronic power supply converts an AC mains supply to a DC supply of a lower voltage. $\sqrt{ } \sqrt{ }$
9.4 On each cycle of input the diode allows pulses of charge to enter the capacitor. V During the period in each cycle that the diodes are off, the capacitor discharges its energy into the load, keeping the supply constant for the full cycle. $\sqrt{ }$
9.5

9.6π filter $\sqrt{ }$

$$
9.7 \quad \begin{align*}
E_{P K} & =\frac{E_{R M S}}{0,707} \sqrt{ } \\
& =\frac{57,5}{0,707} \sqrt{ } \\
& =81,33 \mathrm{~V} \sqrt{ } \tag{3}
\end{align*}
$$

9.7.2 $\quad V_{P K}=E_{P K}-V_{D} \sqrt{ }$

$$
\begin{align*}
& =81,33-0,65 \mathrm{~V} \\
& =80,68 \mathrm{~V} V \tag{3}
\end{align*}
$$

$$
\text { 9.7.3 } \begin{align*}
V_{A V E} & =0,637 \times V_{P K} V \\
& =0,637 \times 80,68 \sqrt{ } \\
& =51,39 \mathrm{~V} \sqrt{ } \tag{3}
\end{align*}
$$

QUESTION 10: (ELECTRONIC AND DIGITAL) WAVE FORMS

10.1 10.1.1 This is the time between the $50 \% \sqrt{ }$ amplitude points on both the rising $\sqrt{ }$ and the falling edges of the pulse. $\sqrt{ }$
10.1.2 Fall time, this is the time a falling pulse takes to make a change from the higher state 'on' $\sqrt{ }$ to the lower state 'off'. $\sqrt{ }$ It is measured between the 10% and 90% points of the completed pulse. $\sqrt{ }$

$$
\begin{align*}
& 10.2 \quad 10.2 .1 \quad f=\frac{1}{T} \\
& =\frac{300}{60} \mathrm{~V} \\
& =5 \mathrm{~Hz} \sqrt{ } \tag{2}
\end{align*}
$$

$$
\text { 10.2.2 } \begin{align*}
T & =\frac{1}{f} \sqrt{ } \\
& =\frac{1}{5} \sqrt{ } \\
& =0,2 \mathrm{~Hz} \sqrt{ } \tag{3}
\end{align*}
$$

10.3 The clamping circuit actually binds the upper or lower $\sqrt{ }$ extremes of a waveform to a fixed DC voltage level. $\sqrt{ }$ When unbiased, clamping circuits will fix $\sqrt{ }$ the voltage lower limit $\sqrt{ }$ (or upper limit, in the case of negative clampers) to 0 volt.
$10.4 \quad 10.4 .1$

Sine wave
(2)
10.4.2

Ramp wave
10.4.3

10.5 - Communication $\sqrt{ }$

- Broadcasting $\sqrt{ }$
- Computer network $\sqrt{ }$
10.6

QUESTION 11: (ELECTRONICS AND DIGITAL)

 SEMICONDUCTOR DEVICES11.1 11.1.1 During the forward bias the positive terminal of the battery pumps holes into the P-region of the diode. $\sqrt{ }$ The negative terminal pumps electrons into the N -region. $\sqrt{ }$ As the voltage increases, the depletion region will become thinner and thinner and the diode will offer less and less resistance and start to conduct. $\sqrt{ }$
11.1.2 In reverse bias the P -type material is connected to the negative terminal and the N -type material is connected to the positive terminal of the battery. $\sqrt{ }$ In this condition, the holes in the P-type are filled by electrons from the battery. $\sqrt{ }$ The electrons in the N -type material are sucked out of the diode by the positive of terminal of the battery, so the diode is depleted of charge and it will not conduct. $\sqrt{ }$
$11.2 \quad 11.2 .1$

11.2.2

B
11.3 A DIAC is commonly used to trigger a TRIAC $\sqrt{ }$ as it breaks down at a precise voltage $\sqrt{ }$ so giving the TRAIC a precise triggering voltage in both halfcycles. $\sqrt{ }$
11.4

NPN Transistor Output Characteristic curve

Abstract

11.5 A zener diode has a unique reverse biased operating characteristic $\sqrt{ }$ in that it blocks any flow of current when under low reverse voltage $\sqrt{ }$ but as soon as the voltage rises to reach its zener breakdown it breaks down $\sqrt{ }$ and allow s current to flow in the reverse direction without any damage to itself. $\sqrt{ }$

11.6 Voltage regulator $\sqrt{ }$
11.7 TRIAC is able to conduct in both direction $\sqrt{ }$
11.8 - SCR cannot switch by itself $\sqrt{ }$
11.9 Solid-state devices are devices that are built entirely from solid materials $\sqrt{ }$ and in which the electrons or other charge carriers are confined entirely within the solid material. $\sqrt{ }$
11.10 Holding current is the minimum current $\sqrt{ }$ that must flow to prevent the SCR
from switching off. $\sqrt{ }$
11.11 Apply a voltage across the TRIAC in either polarity, $\sqrt{ }$ and then apply a pulse to the gate of either polarity. $\sqrt{ }$
11.12 1. Forward conduction $\sqrt{ }$
2. Gate pulse $\sqrt{ }$
3. Reverse conduction $\sqrt{ }$
4. $\mathrm{V}_{\mathrm{BO}} V$
5. IF V
6. $\mathrm{I}_{\mathrm{H}} \mathrm{V}$
7. $+\mathrm{V} \sqrt{ }$
11.13 Silicon Control Rectifier $\sqrt{ }$
11.14 Phosphorous, arsenic or antimony $\sqrt{ }$

QUESTION 12: (ELECTRONICS)

POWER SUPPLIES
12.1

12.2 The capacitor passes AC voltage while at the same time blocking DC voltage. $\sqrt{ }$ The inductor passes DC voltage while at the same time blocking AC voltage. $\sqrt{ }$
12.3 The electronic power supply converts an AC mains supply to a DC supply of a lower voltage. $\sqrt{ } \sqrt{ }$
12.4

$12.5 \quad$ 12.5.1 $\quad E_{P K}=\frac{E_{R M S}}{0,707} \sqrt{ }$

$$
\begin{align*}
& =\frac{57,5}{0,707} \sqrt{ } \\
& =81,33 \mathrm{~V} V \tag{3}
\end{align*}
$$

$$
\text { 12.5.2 } \begin{align*}
V_{P K} & =E_{P K}-V_{D} V \\
& =81,33-0,65 \sqrt{ } \\
& =80,68 \mathrm{~V} \mathrm{~V} \tag{3}
\end{align*}
$$

$$
\begin{align*}
12.5 .3 \quad V_{A V E} & =0,637 \times V_{P K} \sqrt{ } \\
& =0,637 \times 80,68 \sqrt{ } \\
& =51,39 \mathrm{~V} \sqrt{ } \tag{3}
\end{align*}
$$

QUESTION 13 (ELECTRONICS)

AMPLIFIERS

13.1 - Common Emitter $\sqrt{ }$

- Common Collector $\sqrt{ }$
- Common Base $\sqrt{ }$
13.2

NPN Transistor Output Characteristic curve
13.3 It suffers from thermal instability $\sqrt{ }$ as it relies solely on the gain value of the single transistor for which it is designed. $\sqrt{ }$
13.4 - Improved stability against changes of temperature. $\sqrt{ }$

- More reliable and constant voltage gain. $\sqrt{ }$
- Decrease distortion of the amplifier. $\sqrt{ }$
13.5 Biasing is used in amplifier design because it establishes the correct operating point $\sqrt{ }$ of the transistor amplifier ready to receive signals, $\sqrt{ }$ thereby reducing any distortion $\sqrt{ }$ to the output signal. $\sqrt{ }$ DC biasing refers to the application of the correct external voltages $\sqrt{ }$ to establish an operating point on the characteristic output curve. $\sqrt{ }$
13.6 An amplifier is an electronic device that increases \downarrow the power of a smaller input signal. $\sqrt{ }$
$13.7 \quad 13.7 .1$

$$
\begin{align*}
I_{B} & =\frac{V_{C C}-V_{B E}}{R_{B}} \\
& =\frac{12-0,6}{285} \sqrt{ } \\
& =40 \mu A \vee \tag{2}
\end{align*}
$$

13.7.2

$$
\begin{align*}
\beta & =\frac{I_{C}}{I_{B}} \\
I_{C} & =\beta \times I_{B} \sqrt{ } \\
& =100 \times 40 \times 10^{-6} \sqrt{ } \\
& =4 \mathrm{~mA} V \tag{3}
\end{align*}
$$

13.8 The purpose of a variable resistor is to act as a potential divider V that is able to hold the voltage on the base terminal $\sqrt{ }$ at a fixed value which will not vary under any conditions.
13.9

QUESTION 14: (ELECTRONICS AND DIGITAL)

 SENSORS AND TRANSDUCERS14.1 This detector relies on the oxidation of a thin film of heated metal oxide; $\sqrt{ }$ deposited on a silicon slice when it comes into contact with a gas. $\sqrt{ }$ This oxidation changes the metal resistance. $\sqrt{ }$

14.3 It is a device that changes energy from one form into another. $\sqrt{ }$
14.4 Piezo Electric Effect $\sqrt{ }$
14.5 When the load is applied to the body of a resistor load cell the member deforms creating a strain at those locations due to the stress applied. $\sqrt{ }$ As a result two of the strain gauges are in compression $\sqrt{ }$ and the other two are in tension. These four strain sensors are used as the four arms of a Wheatstone Bridge. V

QUESTION 15: (ELECTRONICS AND DIGITAL) COMMUNICATION SYSTEMS

15.1 The increase in amplitude of an oscillation in a mechanical or electrical system, $\sqrt{ }$ under the influence of an external periodic impulse of similar frequency to the original vibration. $\sqrt{ }$
15.2 • Capacitor $\sqrt{ }$

- Inductor $\sqrt{ }$
15.3 It constantly adjust its output frequency $\sqrt{ }$ to match the frequency of the input signal. $\sqrt{ }$
15.4 A regenerative receiver is one that that feeds the output from an amplifier back onto it over and over again. $\sqrt{ }$ If this is done in such a way as to promote positive feedback, $\sqrt{ }$ the circuit has the effect of turning into a high gain amplifier $\sqrt{ }$ as well as giving the circuit added properties. $\sqrt{ }$ This is used in the RF amplifier stage of receivers giving them name of regenerative receivers. $\sqrt{ }$
15.5

15.6 FSK is a method that enables the transmission digital pulse signal $\sqrt{ }$ using traditional radio transmitting and receiving method. $\sqrt{ }$
15.7 1. FM Oscillator $\sqrt{ }$

2. Frequency multiplier $\sqrt{ }$
3. RF amplifier $\sqrt{ }$
15.8 - Narrower bandwidth: $\sqrt{ }$ Making way for more channels to be accommodated. $\sqrt{ }$

- Noise reduction: $\sqrt{ }$ As the transmission uses only one half the bandwidth of a normal system the thermal noise power is also reduced to one half of a double side band system. $\sqrt{ }$

QUESTION 16: (DIGITAL)

LOGIC
16.1 16.1.1 AND Function $\sqrt{ }$
16.1.2

A	B	X
0	0	0
0	1	0
1	0	0
1	1	1

16.1.3 $\quad X V=A . B \sqrt{ }$
16.1.4

$16.2 \quad$ 16.2.1 $\quad Q_{1} \sqrt{ }=A . B \sqrt{ }$
16.2.2
$Q \checkmark=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}} \checkmark$
16.2.3

$$
\begin{equation*}
\mathrm{Q} \checkmark=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \checkmark+\mathrm{A} \cdot \mathrm{~B} \checkmark \tag{2}
\end{equation*}
$$

$16.3 \quad 16.3 .1$

16.3.2
$Q=\bar{A} \bar{B} \checkmark+A \bar{C} \checkmark$
16.3.3

(4)
$16.4 \quad 16.4 .1$

Inputs		Output	
A	B	S	Co
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

(2)
16.4.2

$$
\begin{align*}
& S=A \oplus B^{\checkmark} \\
& C o=A \cdot B \tag{2}
\end{align*}
$$

16.4.3

16.5 - Low cost $\sqrt{ }$

- Ease of use $\sqrt{ }$

QUESTION 17: (DIGITAL)

POWER SUPPLIES

17.1

17.2 The capacitor passes AC voltage while at the same time blocking DC voltage. $\sqrt{ }$ The inductor passes DC voltage while at the same time blocking AC voltage. $\sqrt{ }$
17.3 The electronic power supply converts an AC mains supply to a DC supply of a lower voltage. $\sqrt{ } \sqrt{ }$
17.4

17.5 \quad filter circuit $\sqrt{ }$

