

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2014

MECHANICAL TECHNOLOGY MEMORANDUM

MARKS: 200

This memorandum consists of 12 pages.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

- 1.1 D√
- 1.2 C ✓ 1.3 B ✓
- 1.3 B√ 1.4 D√
- 1.4 D ¢ 1.5 C ✓
- 1.6 A ✓
- 1.7 C ✓
- 1.8 B√
- 1.9 A ✓
- 1.10 C ✓
- 1.11 C ✓
- 1.12 C ✓
- 1.13 B ✓ 1.14 C ✓
- 1.14 C V 1.15 C V
- 1.15 C ✓
- 1.10 CV 1.17 D√
- 1.18 C ✓
- 1.19 C ✓
- 1.20 A ✓

(20 X 1) [20]

QUESTION 2: SAFETY

- 2.1 2.1.1 Every work place must be ventilated either by natural or mechanical means so that the air breathed by employees is safe.
 - That the concentration therein of any explosive or flammable gas, vapour or dust does not exceed safety levels. ✓ (Any 1) (1)
 - 2.1.2 There must be adequate lighting in the work place. \checkmark
 - The lighting on rotating machinery must not cause a flashing effect. ✓
 - Lights and lamps must be kept clean and maintained. ✓ (Any 1) (1)
- 2.2 Store full cylinders apart from empty ones. ✓
 - Keep cylinders in a cool place and protect them from sunlight and other sources of heat.✓
 - Always store and use cylinders in an upright position. ✓
 - Store oxygen cylinders away from fuel cylinders. ✓
 - Never stack cylinders on top of each other.
 - Do not bang or work on cylinders.
 - Never allow cylinders to fall from any height.
 - Do not allow grease or oil to come into contact with oxygen fittings.

(Any 4 x 1) (4)

- 2.3 All driving belts must be guarded. ✓
 - Driving belts must never be adjusted while the machine is in motion.

(Any 1) (1)

(NOVE	MBER 2014)	MECHANICAL TECHNOLOGY	3
2.4	To make	e the workplace as safe as possible. \checkmark	(1)
2.5	 Fixed Autor Manu Self-a Autor 	l guards. ✓ natic guards. ✓ al guards. adjusting guards. natic sweep-away or push-away guards. (Any 2 x 7	1) (2) [10]
QUE	ESTION 3	: TOOLS AND EQUIPMENT	
3.1	 All co Insula Electriconta 	Innections must be secured. \checkmark ation and electrical leads must be in sound condition. \checkmark rode holders must be properly insulated to prevent accidental lect with current-carrying components. \checkmark	
	 Mach 	ines must be regularly serviced and well maintained. \checkmark	(4)
3.2	To meas accurate	sure an inside diameter \checkmark or the inside of two parallel surfaces ely. \checkmark	(2)
3.3	3.3.1	It is a machine that cuts material by means of a mechanical or electrical method. \checkmark	(1)
	3.3.2	It is used for cutting to length various metals of different sizes, kinds and shapes. \checkmark	(1)
3.4	3.4.1	A suitable hole must be drilled a little larger than the core diameter of the tap. \checkmark	er (1)
	3.4.2	Clearance size is the size of the hole that must be drilled so that the hole will clear the outside diameter of a screw or bolt. \checkmark	(1)
3.5	For heat	ing, bending, gas welding, brazing and silver soldering. \checkmark (Any γ	1) (1)
3.6	It is used	d when you want to press bearings on shafts or remove them from	
	shafts. ✓ You use of a mot	it to push a shaft with a bearing into a housing like the water pump or car. (Any for car.) 1) (1) [12]

(Any 2 x 1)

(3)

(2) [**13**]

QUESTION 4: MATERIALS

4.1	It is the change in the structure of metals by the application of heating and	
	cooling in their solid states \checkmark so as to change their properties. \checkmark	(2)

- 4.2 Open-hearth furnace ✓
 - Basic oxygen furnace ✓
 - Electric furnaces ✓
- 4.3 Tempering: ✓ It is a process applied to steel to relieve the strain induced during the hardening process to reduce brittleness. ✓ Case Hardening: ✓ It is a surface hardening process to put a case over a tough core. ✓ Case Hardening: ✓ It is a surface hardening process to put a case over a tough core. ✓ (Any 2 x 2) (4)
 4.4 It should be cooled down to room temperature, ✓ in still air or away from draughts. ✓ (2)
- 4.5 Water, ✓oil ✓or brine

QUESTION 5: TERMINOLOGY

5.1	Mass production is the manufacturing or fabrication of products on a massive scale. \checkmark	(1)
5.2	FIGURE 5.3 A – Convex cutter. ✓ FIGURE 5.3 B – Double Equal angle cutter. ✓	(1) (1)

- 5.3 5.3.1 FIGURE 5.3 A: Rapid indexing, known as direct indexing is where the worm shaft is disengaged from the worm wheel in the dividing head ✓ for quick indexing to cut squares, hexagons, pentagons, etc. ✓ (2)
 - 5.3.2 FIGURE 5.3 B: Simple indexing is used to turn the crank ✓ to cut the number of teeth on the circumference of the work piece. ✓ (2)

5.4 N(Gear with teeth) = 88

No. of turns =
$$\frac{40}{N}$$

= $\frac{40}{88}\checkmark$
= $\frac{40}{88} = \frac{5}{11}$
= $\frac{5}{11} \times \frac{6}{6}\checkmark$
= $\frac{30}{66}\checkmark$

No full turns on the crank handle and 30 holes in a 66 hole circle. \checkmark (4)

4

5

Angle = $\frac{D-d}{2 \times L} \checkmark$ = $\frac{80-50}{2 \times 70} \checkmark$ = $\frac{30}{140} \checkmark$ 5.5 = 0.214= 12° 75″ θ \checkmark Helix angle is 12° and 75 minutes. \checkmark (5)Indexing = $\frac{40}{N}$ = $\frac{40}{5}$ \checkmark 5.6 No of turns = 8 full turns of the crank handle \checkmark Therefore $\sin \Theta = \frac{X}{60} \checkmark$ X = 60 sin Θ $X = 60 \sin 72^{\circ}$ X = 57,06 mm ✓ Depth cut = $\frac{Diameter of shaft - Distance across the flat side}{2}$ $= \frac{\frac{60-x}{2}}{\frac{60-57,06}{2}} \checkmark$ Depth of cut = 1,47 mm \checkmark (6)

- 5.7 Taper turning is a process of producing a conical (pointed) profile, ✓ which equally increases or decreases in diameter ✓ as the cutting tool is fed longitudinally along the rotating work piece on the lathe. ✓
- 5.8 The milling cutter should correspond with the centre of the work piece. \checkmark
 - To centre the milling cutter on the work piece, measure the thickness of the cutter and mount the cutter on the arbor. ✓
 - Measure the diameter of the work piece and position a square on the machine table against the work piece. ✓
 - Measure from the square to the inner side of the milling cutter ✓ a distance equal to half the diameter of the work piece minus half of the width of the milling cutter.√

(5) **[30]**

(3)

QUESTION 6: WELDING JOINTS

6.1	A – Size of weld. B – Root gap. C – Length of weld. D – Pitch of weld. F – Weld all round. G – Arrow side of weld. \checkmark	(7 x 1)	(7)
6.2	FIGURE 6.2A: It is used for soldering electric components. ✓ FIGURE 6.2B: It is used for soldering copper plumbing pipes.	\checkmark	(1) (1)
6.3	 Type of material used. ✓ Number of welds. ✓ Type of welding rod used. ✓ Size of the weld. ✓ The preparation. The presence of oxygen/hydrogen. 	(Any 4 x 1)	(4)
6.4	A – Fillet weld (both sides) \checkmark B – Square butt weld (arrow sides) \checkmark C – V-Butt weld (both sides) \checkmark D – Single bevel weld (arrow side) \checkmark E – U-Butt weld (arrow side) \checkmark F – J-Butt weld (arrow side) \checkmark		(6)
6.5	A – Slag \checkmark B – Gas envelope \checkmark C – Coating \checkmark D – Weld metal \checkmark E – Molten pool \checkmark F – Parent metal \checkmark	(6 x 1)	(6) [25]

QUESTION 7: FORCES

- 7.1 7.1.1 Equilibrium: When two or more forces act on a body and the body remains at rest, the forces are said to be in equilibrium. ✓
 - 7.1.2 Resultant: If a system of forces acts on a body and a single force can be found that has the same effect as the system, ✓ that single force is known as the resultant of the system. ✓
 - 7.1.3 Bow's Notation: It is a method which can be used to simplify problem solving ✓ where three or more forces are applied to a body in a system of forces. ✓

7.2.2 SCALE: 1 mm = 100 N

(3)

(1)

(2)

(2)

8		MECHANICAL TECHNOLOGY	(NOVEMBER 2014)
	7.2.3	 The tension in rope <u>bc</u> has a magnitude of 7 750 N. ✓ The tension in rope <u>ca</u> has a magnitude of 5 400 N. ✓ 	(2)
7.3	7.3.1	RR: (RL x 9) = (12 x 3) + (16 x 7) \checkmark = 36 + 112 RL x 9 = 148 RL = $\frac{148}{9}$ RL = 16,44 N \checkmark RL: (RR x 9) = (16 x 2) + (12 x 6) \checkmark = 32 + 72 RR x 9 = 104 RR = $\frac{104}{9}$ RR = 11.55 N \checkmark	(4)
		The beam is in equilibrium, because the downward forces = upward forces.	=
	7.3.2	BM: A = (16,44 x 2) ✓ = 32,88 N ✓ BM: B = (16,44 x 6) – (16,44 x 4) ✓ = 34,64 N ✓	(2) (2)
	7.3.3	Downward forces = Upward forces 16 N + 12 N = 16,4 N + 11,55 N ✓ 28 N = 28 N ✓	(2)
7.4	Given:	Load: 70 kN = 70 x 10 ³ Round Tube = 50 x 3 mm Cross sectional area =? Cross sectional area = $\frac{\pi x 50^2}{4} - \frac{\pi x 44^2}{4} \checkmark$ = 1963,495 - 1520,53 = 442,964 mm ² ✓ Convert to m ² = $\frac{442,964}{10^6}$ ✓ : Stress = $\frac{Load}{Cross sectional area}$ = $\frac{70 x 10^3}{442,964}$ = $\frac{70 x 10^3 x 10^6}{442,964}$ ✓ = $\frac{70 x 10^9}{442,964}$ = 158026385,9 Pa (N/m ²) ✓ = 158,026 x 10 ⁶ Pa	
		= 158,026 MPa ✓	(6) [30]

8.1	Positive camber is the outward tilt \checkmark of the wheel at the top away from the vehicle when viewed from the front. \checkmark	(2)
8.2	 Check for the following: Uneven wear ✓ Tyre pressure ✓ Wheels for run-outs ✓ Kingpins and bushes for wear Suspension ball joints for wear, locking and lifting Tie-rod ends for excessive free play 	
	Ineffective shock absorbers (Any 3 x 1)	(3)
8.3	 Static balancing: A crankshaft is in static balance when the mass in all directions from the centre of rotation is equal while the crankshaft is at rest. ✓ Dynamic balancing: A crankshaft is in dynamic balance when the centrifugal forces of rotation in all directions at any point are equal while the crankshaft is rotating. ✓ 	(2)
8.4	 Lack of lubrication ✓ Overheating ✓ Inadequate cooling ✓ Inadequate maintenance ✓ 	(4)
8.5	8.5.1 It is used to determine the quantity of fuel to be injected into the system. ✓	(1)
	 8.5.2 It is used to adjust the exact timing of the spark to provide better power and economy. ✓ It will identify all the faults in the ignition system. (Any 1) 	(1)
8.6	It is the difference in the distances between the wheel rims or tyre thread centres, \checkmark measured at stub axle height behind and in front of the axle or suspension. \checkmark	(2) [15]

9

(3)

(5)

(6)

QUESTION 9: SYSTEMS AND CONTROL

- 9.1 It is used to change the direction/s of a force or motion.
 - To cause two parts to move at once.
 - To make objects move identically to each other.
- 9.2 Switch ignition switch off; turn the crankshaft pulley until the number one piston is at TDC. ✓
 Check the timing marks on the crank pulley to be in line with the mark on the timing cover/ flywheel mark/pointer. ✓
 - Loosen the clamp bolt of the distributer and switch on the ignition.
 - Turn the distributer casing in the opposite direction to the rotor direction until the test lamp comes on, ✓ which indicates the contact points about to open; a spark or high voltage current will jump across the points. ✓
 - Tighten the clamp bolt of the distributer casing.
 - Static timing is completed. ✓
- 9.3 $\frac{Revolutions of final driven gear}{Revolutions of first driver gear} = \frac{Product of number of teeth on all the drivens}{Product of number of teeth on all the driven gears} \checkmark$ $\frac{N_D}{N_A} = \frac{T_A}{T_B} \times \frac{T_C}{T_D} \checkmark$ $N_D = \frac{T_A}{T_B} \times \frac{T_C}{T_D} \times N_A \checkmark$ $N_D = \frac{30}{60} \times \frac{50}{80} \times 20 \checkmark$ $N_D = 6,25 \text{ revs/sec }\checkmark$

Rotational frequency of driven shaft = 6 revs/sec (rounded off) \checkmark

9.4 First determine the liquid area of the plunger:

Area =
$$\frac{\pi D^{2}}{4}$$

= $\frac{\pi x 50^{2}}{4 x 10^{6}}$ OR Area = $\frac{\pi x 50 x 50}{4 x 10^{6}}$ \checkmark
= 0,0019635 m^{2} \checkmark
Pressure in jack
Pressure = $\frac{Force}{Liquid Area}$
Pressure = $\frac{300}{0,0019635}$ \checkmark
= 152788,3881 Pa \checkmark
Liquid Area in ram:
Area = $\frac{\pi x 500^{2}}{4 x 10^{6}}$ OR Area = $\frac{\pi x 500 x 500}{4 x 10^{6}}$ \checkmark
= 0,19635 m^{2} \checkmark
Load lifted by jack:
Pressure = $\frac{Force/Load}{Area}$
Load = Pressure x Liquid Area \checkmark
= 152788,3881 x 0,19635 \checkmark
Load = 30 000 N OR 30 kN \checkmark (9)

9.5 Meshing gears is when two gears interlock or engage without slipping, \checkmark having the same module. \checkmark

(2) [**25]**

QUESTION 10: PUMPS

- 10.1 Worn external packing, which allows the pump to draw air during the suction stroke. \checkmark
 - Worn internal packing which allows the fluid to slip from the one fluid chamber to the other fluid chamber. ✓
 - A strainer exposed above the fluid level. ✓
 - A faulty foot valve. ✓
 - Faulty or loose flanges or joints. ✓
 - A weak or faulty seat or spring in the valve. (Any 5 x 1) (5)
- 10.2 A mono pump is a displacement pump.
 - The rotor seals tightly against the rubber stator as it rotates, forming a set of fixed-size cavities in between. ✓
 - The cavities move when the rotor is rotated but their shape or volume does not change. ✓
 - The pumped material is moved inside the cavities. \checkmark
 - The liquid is forced through the space between the stator and the rotor. ✓

1	4	١	
(4)	

(4)

0.3	Gear Pump – Advantages	Rotor Pump – Advantages
	The pump is very efficient and	There are no valves or springs.√
	develops a high pressure√	All movements are rotary movements.
	There are no reciprocating parts	Wear is minimal.
	which can cause vibrations.	Operation of the pump is silent.
	The drive is always positive.	Large inlet and outlet parts ensures a
	It has no valves or springs	steady flow of oil without pulsation.
	(Any 1) (1)	(Åny 1) (1)
	Gear Pump – Disadvantages	Rotor Pump – Disadvantages
	Wear between the gears and	Manufacturing costs are high ✓
	the housing reduces the pump	
	pressure.√	
	When the gears wear, the pump	
	tends to be noisy.	
	(Any 1) (1)	(1)

10.4	•	When the shaft drives the drive gear, it drives the driven gear and small pockets of oil are trapped between the gear teeth and the pump housing. \checkmark	
	•	The rotation spaces between the teeth carry the oil towards the outlet port. \checkmark	
	•	At the same time a vacuum is created over the inlet port and the oil is drawn from the sump. \checkmark	
	•	The pressure forces the oil through the outlet port, from where it is fed to the oil channels.	(4)
10.5	• • •	Centrifugal pumps are more compact. ✓ The initial cost is relatively low. ✓ Low maintenance cost. ✓ Centrifugal pumps are quite adaptable. The construction of the pump is simple and reliable. The pump works at high speed and can be connected to a motor	
	•	directly. Centrifugal pumps have no moving values or sensitive parts. (Any 3 x 1)	(3) [20]

TOTAL: 200

12