

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2016

MECHANICAL TECHNOLOGY MEMORANDUM

MARKS: 200

This memorandum consists of 13 pages.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

1.1	C✓	(1)
1.2	C✓	(1)
1.3	B✓	(1)
1.4	A✓	(1)
1.5	C ✓	(1)
1.6	B✓	(1)
1.7	D✓	(1)
1.8	C ✓	(1)
1.9	D✓	(1)
1.10	D✓	(1)
1.11	D✓	(1)
1.12	C✓	(1)
1.13	C ✓	(1)
1.14	D✓	(1)
1.15	D✓	(1)
1.16	D✓	(1)
1.17	D✓	(1)
1.18	C✓	(1)
1.19	B✓	(1)
1.20	A✓	(1) [20]

QUESTION 2: SAFETY

- 2.1 Store full cylinders apart from empty ones. ✓
 - Keep cylinders in a cool place. ✓
 - Always store and use cylinders in an upright position. ✓
 - Never stack cylinders on top of one another. ✓
 - Do not bang or work on cylinders. ✓
 - Cylinders must be chained to prevent them from falling. ✓
 - Do not allow oil or grease to come into contact with oxygen fittings as oil and oxygen together are flammable. ✓ (Any 3 x 1) (3)
- Guards must be fitted correctly. ✓
 - Ensure there is no oil or grease in front of the machine or the floor. ✓
 - Check that the tool rest is no more than 3 mm from the wheel. \checkmark
 - Step aside when starting the machine. ✓
 - Dress uneven wheels with an emery wheel dresser. ✓
 - Grind only on the face of the grinding wheel and never on the side. ✓
 - Never force grinding so as to slow the machine down. \checkmark (Any 2 x 1) (2)
- 2.3 Wear personal protective clothing. ✓
 - Wear correctly shaded welding helmet. ✓
 - Wear rubber soled shoes. ✓
 - Ensure that equipment and cables are in good condition. ✓
 - Floors must be dry. ✓
 - There should be adequate ventilation to remove harmful fumes. ✓
 - All electrodes must be kept dry. ✓ (Any 3 x 1) (3)
- All guards must be in place. ✓
 - No loose clothing. ✓
 - No oil or grease on the floor in front of the machine. ✓
 - Do not use hands to remove cuttings. ✓
 - Never adjust the cutting tool while machine is running.
 - Do not lean as a habit on the machine.
 - Do not attempt to stop the chuck by placing your hand on the chuck while the machine is slowing down. (Any 2 x 1) (2)

[10]

QUESTION 3: TOOLS AND EQUIPMENT

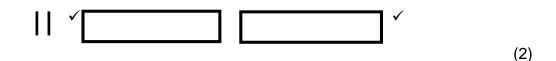
3.1	Horizontal milling machine ✓ Vertical milling machine ✓	(2 x 1)	(2)
3.2	Clean the tool after using it. \checkmark Store it safely after using it. \checkmark		
	Ensure that the sockets fit properly onto it. \checkmark	(Any 2 x 1)	(2)

4	MECHANICAL TECHNOLOGY	(EC/NOVEMB	ER 2016)
3.3	 Taper taps ✓ Second or intermediate taps ✓ Bottoming taps or plug taps ✓ 		(3)
3.4	 Clean after use. ✓ Never force the drill. ✓ Oil the machine regularly. ✓ Check rack on side of pillar column for damage. ✓ Release the table lock before adjusting. ✓ 	(Any 3 x 1)	(3)
3.5	Oxygen ✓ and Acetylene ✓		(2) [12]
QUES	TION 4: MATERIALS		
4.1	Changing the structure and grain of metals \checkmark by applying hea	t. ✓	(2)
4.2	 Low carbon steel ✓ Medium carbon steel ✓ High carbon steel ✓ 	(Any 2 x 1)	(2)
4.3	 Water ✓ Oil ✓ Brine Liquid salts Molten lead Soluble oil Air 	(10, 2, 1)	(2)
		(Any 2 x 1)	(2)
4.4	4.4.1 C ✓		(1)
	4.4.2 B ✓		(1)
	4.4.3 D ✓		(1)
	4.4.4 A ✓		(1)
4.5	 Heating the metal slowly to a certain temperature to ensuruniform temperature. ✓ Soaking the metal. ✓ 	re a	
	 Cooling the metal at a certain rate to room temperature. 	/	(3) [13]

QUESTION 5: TERMINOLOGY

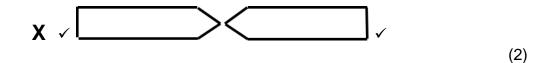
5.1	Arbor cutters: • Plain milling ✓ • Side milling ✓ • Staggered tooth • Slitting) (2)	
	Shank cutters• End mills \sqrt • Shell-end \sqrt • T-slot• Woodruff(Any 2 x 1)) (2)	
5.2	Divides the circumference of the work piece into any number of equal parts. \checkmark Holds the work piece in the required position while cuts are being made. \checkmark		
5.3	5.3.1 The surface may be produced by any manufacturing process. \checkmark	(2) (1)	
	5.3.2 It indicates the amount of stock to be removed. \checkmark	(1)	
5.4	 Rapid indexing ✓ Simple indexing ✓ 	(2)	
5.5	NOTE: $\frac{\theta}{2} = \frac{6^{\circ}}{2} = 3^{\circ} \checkmark$		
	$Tan \theta = \frac{D-d}{2 x L} \checkmark$		
	Tan $3^{\circ} = \frac{50-d}{2 x 120} \checkmark$		
	$0,0524 = \frac{50-d}{240} \checkmark$		
	d = 0,0524 x 240 − 50 ✓		

 $d = 37,42 \text{ mm} \checkmark$ (6)

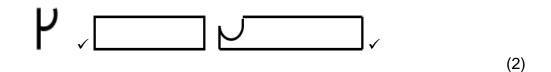

(EC/NOVEMBER 2016)

5.6 Sin
$$\theta = \frac{Distance\ across the\ flat\ side\ (X)}{40}$$

 $X = Sin\ \theta \times 40$
 $X = Sin\ \theta^{\circ} \times 40 \checkmark$
 $X = 0.866 \times 40 \checkmark$
 $X = 0.866 \times 40 \checkmark$
 $X = 34,64 \ mm \checkmark$ (Distance across the flat side)
Depth of cut $(x) = \frac{40 - X}{2} \checkmark$
 $x = \frac{40 - 34,64}{2} \checkmark$
 $x = 2.68 \ mm \checkmark$ (Depth of cut of the biggest hexagon) (6)
5.7 Indexing $= \frac{40}{N} \checkmark$
 $= \frac{40}{20} \checkmark$
Indexing $= 2 \ Full \ turns \checkmark$ (3)
5.8 5.8.1 Force \checkmark (1)
5.8.2 Pa. \checkmark (1)
5.8.3 Watt \checkmark (1)
5.9 Bow's notation:


It is the method which can be used to simplify problem solving \checkmark where three or more forces are applied to a body in a system of forces. \checkmark (2) **[30]**

QUESTION 6: JOINING METHODS


6.1 6.1.1 Square butt joint:

6.1.2 Double-V-butt joint:

6.1.3 Single-J-butt joint:

- 6.2 <u>Welding positions:</u>
 - Flat position. ✓
 - Horizontal position. ✓
 - Vertical position. ✓
 - Oblique position. ✓
 - Overhead position
 - All round position
- 6.3 <u>Rightward gas welding:</u>
 - Rightward gas welding or backhand gas welding is usually used for welding material 4 mm thick and thicker. ✓
 - Here the rod follows the flame, ✓ which tends to anneal the welded joint as the welding progresses. ✓
 - The rod is held at 30° 40° with the base metal and the flame at 40° 50°. ✓
- 6.4 <u>Shut down procedure:</u>
 - Shut off the acetylene and oxygen stop valves. ✓
 - Shut off the gas mains.(cylinder valves) ✓
 - Purge the system. ✓
 - Reset regulators to zero outlet pressure. ✓
 - Close the torch valves. ✓

(4)

(5)

(Any 4 x 1) (4)

- 6.5 <u>Welding symbol elements:</u>
 - Reference line ✓
 - Arrow ✓
 - Weld symbol ✓
 - Supplementary symbol(s) ✓
 - Dimension(s) ✓
 - Tail ✓
 - Specification, process or other reference(s) (Any 6 x 1) (6)

[25]

(2)

(3)

QUESTION 7: FORCES

7.1 Resultant:

If a system of forces acts on a body and a single force can be found \checkmark that has the same effect as the system, that single force is known as the resultant. \checkmark

- 7.2 <u>Types of forces:</u> Resultant ✓ Equilibrium ✓ Equilibrant ✓
- 7.3 Given:

Load = 12 kN = 12 x 10³ N
Stress = ?
Cross sectional area =
$$\frac{\pi D^2}{4}$$

= $\frac{\pi 25^2}{4} \checkmark$
= $\frac{\pi.625}{4} \checkmark$
= 490,9 mm² \checkmark
Stress = $\frac{12 x 10^3}{4,909 x 10^{-4}} \checkmark$
= 24 444 897 Pa \checkmark

Stress = 24,445 MPa
$$\checkmark$$

Stress = $\frac{Load}{Cross sectional area}$
 10×10^{3}

$$= \frac{10 \times 10^{3}}{\frac{400}{10^{6}}} \checkmark \checkmark$$
$$= 25\ 000\ 000\ Pa \checkmark$$
$$= 25\ MPa \checkmark$$

(6)

(6)

7.4

7.5 7.5.1 RL:
$$(RR \times 8) = (4 \times 3) + (5 \times 5) \checkmark$$

= 12 + 25 \sigma
= 37 \sigma
RR = 4,625 N \sigma (4)

AND

RR: (RL x 8) =
$$(5 \times 3) + (4 \times 5) \checkmark$$

= $15 + 20 \checkmark$
= $35 \checkmark$
RL = 4,375 N \checkmark (4)

7.5.2 <u>Bending moments:</u>

$$BM_{A} = (4,375 \times 3) \checkmark = 13,125 \text{ N} \checkmark$$

$$BM_{B} = (4,375 \times 5) - (4 \times 2) \checkmark$$

$$= 21,875 - 8 \checkmark$$

$$= 13,875 \text{ N} \checkmark$$
(5)

[30]

9

QUESTION 8: MAINTENANCE

8.1	 To O To 	ons for doing wheel alignment. to ensure maximum tyre life. \checkmark ptimal road holding. \checkmark to reduce excessive tyre wear. to reduce steering or tracking problems. (Any 2 x 1)	(2)
8.2	Implica • Ca	b reduce steering or tracking problems. (Any 2 x 1) ations of unbalanced revolving parts: auses excessive wear. \checkmark auses vibration. \checkmark	(2)
8.3	• <u>Typ</u> • Sta	bes of balancing: tic balancing ✓ namic balancing. ✓	(2)
8.4	8.4.1	<u>Fluid friction:</u> Objects moving through liquid or gas experience fluid friction or drag. $\checkmark \checkmark$	(2)
	8.4.2	<u>Rolling friction:</u> Rolling friction works against the motion of a rolling object e.g. a cricket ball on the outfield of a cricket ground as it moves away from the batsman. $\checkmark\checkmark$	(2)
	8.4.3	Sliding friction: Sliding friction is the force that resists the motion \checkmark of an object as it moves along a surface. \checkmark	(2)
8.5	 <u>Ackerman principle</u> To avoid having the tyres slip sideways when cornering. ✓ To reduce tyre wear. ✓ 		(2)
8.6	<u>Meani</u> Disast	ng of calamites: ers. ✓	(1) [15]

QUESTION 9: SYSTEMS AND CONTROL

9.1	 Factors of grip of belt drives: The area of contact ✓ 	
	 The tension ✓ 	
	 The coefficient of friction ✓ 	(3)
9.2	 Advantages of belt drives: It is cheaper than gear drives. ✓ It is quieter than gear drives. ✓ 	(2)
9.3	 Disadvantages of gear drives: A great deal of wear and tear is caused by friction. ✓ Gears are difficult and expensive to manufacture. ✓ Large amounts of power are needed to overcome friction between them. 	(2)
9.4	 Function of valves in hydraulic system: Regulating pressure in a circuit. ✓ Directing hydraulic fluid into a specific direction. ✓ Determine the amount of fluid that will flow in the circuit. 	(2)
9.5	Speed of the driven shaft: $\pi \times D_A \times N_A = \pi \times D_B \times N_B$ $\pi \times 250 \times 700 = \pi \times 120 \times N_B \checkmark$ $N_B = \frac{\pi \times 250 \ 750}{\pi \times 120} \checkmark \checkmark$ $N_B = 1 \ 458.3 \text{ rpm} \checkmark$	(4)
9.6	Pressure in hydraulic fluid: Area $= \frac{\pi D^{2}}{4}$ A $= \frac{\pi 320^{2}}{4}$	

 $A = \frac{\pi 320}{4}$ $A = 80 \ 424 \ mm^2 \ \sqrt{}$ $Pressure = \frac{F}{A} \ \checkmark$ $P = \frac{15 \ 000}{80 \ 424} \ \checkmark$ $P = 187.5 \ kPa \ \checkmark$

(5)

9.7	Calculation of output speed: $\frac{N_O}{N_T} = \frac{T_A \times T_C}{T_B \times T_D}$	
	$\frac{N_O}{840} = \frac{35 \times 43}{86 \times 70} \checkmark$	
	$\frac{N_O}{840} = \frac{1\ 505}{6\ 020}$	
	$N_0 = 0.25 \times 840 \checkmark$	
	Output speed = 210 rpm ✓	(3)
9.8	 Applications of screw threads: To hold parts together. ✓ To transmit motion. ✓ To transmit power. ✓ To adjust parts with reference to one another. ✓ 	(4) [25]
QUES	TION 10: PUMPS	
10.1	 Parts of reciprocating pumps: Inlet valve. / Intake valve. / Admission valve (Any 1) ✓ Outlet valve. / Discharge valve. / Exhaust valve (Any 1) ✓ Plunger / Piston. (Any 1) ✓ 	(3)
10.2	Advantages of gear pumps: • Very efficient. ✓ • Can develop high pressure. ✓ • No reciprocating parts that can cause vibration. ✓ • Drive is always positive. • No valves or springs.	(3)
10.3	 Disadvantages of vane pump: Wear on the vanes are high. ✓ The pump cannot develop high pressure. ✓ They can cause pulsation. ✓ 	(3)
10.4	 Causes of "water hammer" The valve or stop cock in the pipeline can suddenly close. ✓ During the delivery stroke, the water moves up the delivery pipe. ✓ 	(2)
10.5	 Definition of "water hammer" Water hammer is a loud hammering in the pipeline, which is called the "knock" sound. ✓✓ 	(2)

<u>12</u>

10.6	 Causes of pump slip: Worn external packing. ✓ Worn internal packing. ✓ A strainer exposed above the fluid level. ✓ A faulty foot valve. ✓ Faulty or loose flanges or joints. ✓ A weak or faulty seat or spring of a valve. 	(Any 5 x 1)	(5)
10.7	 Types of relief valves: A plunger pressure relieve valve. ✓ A ball pressure relieve valve. ✓ 		(2) [20]
		TOTAL:	200