

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

GRADE 10

MARKS: 200

This memorandum consists of 13 pages.

Please turn over

INSTRUCTIONS TO MARKERS

- 1. All questions with multiple options assume that any relevant, acceptable answer should be considered.
- 2. Calculations:
 - 2.1 All calculations should include formulae.
 - 2.2 Substitution of values should be done correctly.
 - 2.3 All answers MUST contain the correct unit in order to be considered.
 - 2.4 Alternative methods should be considered, on the condition that the correct answer is arrived at.
 - 2.5 When a wrong answer is used in a subsequent calculation, the initial answer will be considered wrong. If, however, the wrong answer is applied correctly thereafter, the marker should determine the answer with the incorrect values. If the candidate uses the answer (that was incorrect initially) correctly, the candidate should be awarded full marks for any correct calculations that follow.
- 3. This memorandum is only a guide with exemplar answers. Alternative interpretations should be considered and marked on merit. This principle should be applied consistently.

SECTION A: GENERIC SECTION (COMPULSORY)

QUESTION 1: OCCUPATIONAL HEALTH AND SAFETY

1.1	An accident is an unplanned and uncontrolled event \checkmark caused by unsafe acts and/or unsafe conditions \checkmark performed by a person that could cause injury to him-/herself or his/her workmates.		
1.2	Good arrang facilitie Good	housekeeping in a workshop means the orderly ement/management \checkmark of tools \checkmark , equipment, operations, storage is and materials to their respective places \checkmark . OR housekeeping can also be defined as 'everything in its place and a	
	place f	or everything'.	(3)
1.3	1.3.1	Smoking prohibited ✓	(1)
	1.3.2	Fire extinguisher√	(1)
	1.3.3	Eye protection must be worn✓	(1)
1.4	Inadeo Conge	juate supports or guards✓ stion in the workplace✓	(2)
1.5	An un condue worker	safe action is the performance of a task or other activity that is cted in a manner that may threaten \checkmark the health and safety of r_{S} . \checkmark	(2) [12]
			ניבן
QUEST	ION 2 :	TOOLS AND MEASURING INSTRUMENTS	ניבו
QUEST 2.1	TION 2: 2.1.1	TOOLS AND MEASURING INSTRUMENTS For gripping, twisting, cutting, bending wires✓ or cables and crimping lugs✓	(2)
QUEST 2.1	TION 2: 2.1.1 2.1.2	 TOOLS AND MEASURING INSTRUMENTS For gripping, twisting, cutting, bending wires ✓ or cables and crimping lugs ✓ To remove solder ✓ so that components may be removed ✓, replaced or salvaged 	(2)
QUEST 2.1	TION 2: 2.1.1 2.1.2	 TOOLS AND MEASURING INSTRUMENTS For gripping, twisting, cutting, bending wires ✓ or cables and crimping lugs ✓ To remove solder ✓ so that components may be removed ✓, replaced or salvaged To remove the molten solder from the joint 	(2)
QUEST 2.1 2.2	TION 2: 2.1.1 2.1.2 2.2.1	TOOLS AND MEASURING INSTRUMENTS For gripping, twisting, cutting, bending wires ✓ or cables and crimping lugs ✓ To remove solder ✓ so that components may be removed ✓, replaced or salvaged To remove the molten solder from the joint Frame ✓	(2) (2) (1)
QUEST 2.1 2.2	TION 2: 2.1.1 2.1.2 2.2.1 2.2.1	TOOLS AND MEASURING INSTRUMENTS For gripping, twisting, cutting, bending wires ✓ or cables and crimping lugs ✓ To remove solder ✓ so that components may be removed ✓, replaced or salvaged To remove the molten solder from the joint Frame ✓ Handle ✓	(2) (2) (1) (1)
QUEST 2.1 2.2	TION 2: 2.1.1 2.1.2 2.2.1 2.2.2 2.2.3	TOOLS AND MEASURING INSTRUMENTS For gripping, twisting, cutting, bending wires ✓ or cables and crimping lugs ✓ To remove solder ✓ so that components may be removed ✓, replaced or salvaged To remove the molten solder from the joint Frame ✓ Handle ✓ Cutting blade ✓	 (2) (2) (1) (1) (1)
QUEST 2.1 2.2	TION 2: 2.1.1 2.1.2 2.2.1 2.2.2 2.2.3 2.2.4	TOOLS AND MEASURING INSTRUMENTS For gripping, twisting, cutting, bending wires ✓ or cables and crimping lugs ✓ To remove solder ✓ so that components may be removed ✓, replaced or salvaged To remove the molten solder from the joint Frame ✓ Handle ✓ Cutting blade ✓ Blade-adjusting nut ✓	 (2) (2) (1) (1) (1) (1)
QUEST 2.1 2.2 2.3	TION 2: 2.1.1 2.1.2 2.2.1 2.2.2 2.2.3 2.2.4 To pre- indirect	TOOLS AND MEASURING INSTRUMENTS For gripping, twisting, cutting, bending wires ✓ or cables and crimping lugs ✓ To remove solder ✓ so that components may be removed ✓, replaced or salvaged To remove the molten solder from the joint Frame ✓ Handle ✓ Cutting blade ✓ Blade-adjusting nut ✓ event electric shock ✓ or other injuries that may result from direct or t✓ contact with energised electrical conductors.	 (2) (2) (1) (1) (1) (2)

2.4 To ensure successful cutting with minimal effort \checkmark and to prevent the blade from breaking, bending or wearing through. \checkmark (2)

(2)

(2) [**20**]

- Use the screw driver for the intended job. ✓
 Use the correct size and type of screw driver to loosen or tighten screws. ✓
 Clean the screw driver tips with a brush or sponge regularly.
- 2.6 An ammeter must be connected in series ✓ with the components under test. ✓ An ammeter has a low resistance and if connected in parallel a high fault current will flow. (2)
- 2.7 The voltmeter must be connected in parallel \checkmark with components under test \checkmark and the voltage must be set to the highest practically readable scale. (2)
- 2.8 To ensure that the measurements taken are as consistent and accurate \checkmark as possible and are within the acceptable range. \checkmark

QUESTION 3: BASIC PRINCIPLES OF ELECTRICITY

- 3.1 3.1.1 An insulator is a material that does not allow current \checkmark to flow through it \checkmark (2)
 - 3.1.2 When the temperature of a material is increased, its resistance decreases ✓ When the temperature of a material is decreased, its resistance increases. ✓
- 3.2 A good conductor ✓ Durable Corrosion/Rust/Oxidation resistant Ductile Malleable

(1)

(2)

(2)

(2)

3.3 The tolerance of a resistor is the percentage error of its resistance value or by how much (more or less) one can expect a resistor's actual measured value ✓ to differ from the stated value. ✓

Ohm's law states that the current in a circuit is directly proportional to the voltage across the circuit ✓ and inversely proportional to the resistance of the circuit ✓, provided the temperature remains constant. ✓ (3)

3.6

$$R = \frac{V}{I}$$

$$R = \frac{220}{2} \qquad \checkmark$$

$$R = 110 \Omega \qquad \checkmark$$
(3)

CAPS – Grade 10 Exemplar (Memorandum)

3.7	3.7.1	$V_3 = IR_3$	\checkmark	
		= 21,2×10 ⁻³ × 4 = 9,96 V	↓70 ✓	(3)
	3.7.2	$V_{R1} = V_{T} - V_{R3}$ = 12 - 9,96 = 2,04 V	✓ ✓ ✓	(3)
	3.7.3	$I_{R1} = \frac{V_{R1}}{R_1} = \frac{2,04}{220} = 9,25 \text{ mA}$	✓ ✓ ✓	(3)
	3.7.4	$I_{R2} = I_T - I_{R1}$ = 21,2-9,25 11,95 mA	✓ ✓ ✓	(3)
	3.7.5	$R_{2} = \frac{V_{R2}}{I_{R2}}$ $= \frac{2,04}{11,95 \times 10^{-3}}$ $= 170 \ \Omega$	✓ ✓ ✓	(3)
~ ~	-			

3.8 The current will increase ✓ because the resistance of the circuit has decreased. ✓ (2)
 [32]

Copyright reserved

QUESTION 4: POWER SOURCES

- 4.1 Energy is the ability \checkmark to do work \checkmark such as the capacity to move an object by the application of force. \checkmark (3)
- 4.2 Nuclear energy ✓
 Hydro energy
 Geothermal energy
 Solar energy
 Wind energy
 Fossil energy

(5)

(2)

(4)

(3)

(1)

4.4 Primary cells are power sources that are not easily recharged after use \checkmark , while secondary cells are power sources that can be recharged. \checkmark

4.5 Potential difference is the electrical pressure measured across a power source ✓ when it is connected to a load ✓. Emf is the electrical pressure measured across a power source ✓ when it is not connected to a load.✓

4.6
$$E = I(R + r) \qquad \checkmark$$

$$r = \frac{E}{I} - R$$

$$= \frac{1,5}{14,9 \times 10^{-3}} - 100 \qquad \checkmark$$

$$= 0,67 \ \Omega \qquad \checkmark$$

4.7

(2) **[20]**

(Any one)

(2)

(2)

QUESTION 5: ELECTRONIC COMPONENTS

- 5.1 5.1.1
- 5.1.2
- 5.1.3

- (2)
- 5.2 A capacitor stores charge and dissipates it in a controlled manner. (2)

5.4 5.4.1 $C_T = C_1 + C_2$ \checkmark = 2200×10⁻⁶ + 2200×10⁻⁶ \checkmark = 4400 µF \checkmark (3)

5.4.2
$$\frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}}$$
$$= \frac{1}{2200 \times 10^{-6}} + \frac{1}{2200 \times 10^{-6}}$$
$$C_{T} = 1100 \,\mu\text{F}$$

(3)

(5)

(4)

5.5 T=5T \checkmark T=RC \checkmark $=50000 \times 100 \times 10^{-6}$ =5s \checkmark $T=5 \times 5$ \checkmark =25s \checkmark

Copyright reserved

5.6	When the anode is connected to positive \checkmark and the cathode is connected to negative		
5.7	The purpose of the resistor connected with an LED is to protect the LED \checkmark against excessive current. \checkmark		
QUEST	ION 6: I	MAGNETISM	
6.1	6.1.1	An electromagnet is a type of magnet in which the magnetic field is produced by an electric current flowing through a conductor \checkmark , and this magnetic field will collapse once the current ceases to flow. \checkmark	(2)
	6.1.2	Induction takes place as a result of the expansion and contraction of the magnetic field due to changes in polarity. \checkmark When a second coil is brought closer to the first coil, the magnetic field of the first coil will link \checkmark with the second coil, thus inducing an emf of self-inductance. \checkmark	(3)
6.2	Magnetic flux consists of the invisible magnetic flux lines produced around a magnet \checkmark and is measured in weber (Wb). \checkmark Flux density is the concentration of magnetic flux lines per unit area \checkmark and is measured in weber per square metre Wb/m ² or tesla (T). \checkmark		
6.3	Air core Ferrite Lamina Toroid	e ✓ core ✓ ted iron core core (Any 2)	(2)
6.4	An inductor is formed when an insulated conductor \checkmark is wound into a number of turns to form a coil. \checkmark		(2)
6.5	L _T = L ₁ = 12 = 31	$+L_2 + L_3 \qquad \checkmark \\ 0 + 100 + 90 \qquad \checkmark \\ 0 \text{ mH} \qquad \checkmark$	(3)
6.6	When current passes through a coil it creates a magnetic field around it. \checkmark This magnetic field will attract the armature. \checkmark The armature will rotate slightly around the pivot, which presses against the movable contact. \checkmark This moves the contact into an alternate position. \checkmark		(4)
6.7	6.7.1	Field coils√	(1)
	6.7.2	Stator√	(1)
	6.7.3	Poles√	(1)
	6.7.4	Armature✓	(1)
6.8	To tran	sfer the current \checkmark from the supply to the commutator. \checkmark	(2) [26]
		TOTAL SECTION A:	136

SECTION B: ELECTRICAL

QUESTION 7: DOMESTIC INSTALLATIONS

- 7.1 A domestic installation is the electrical installation in a house \checkmark , also called the wiring system. \checkmark (2)
- 7.2 7.2.1 50 Hz \checkmark (1)
 - 7.2.2 220 V-240 V \checkmark (1)

7.3

- 7.4 South ✓ African ✓ National ✓ Standards ✓
- 7.5 To ensure that people, animals and property \checkmark are protected from hazards \checkmark that may arise from the operation of an electrical installation \checkmark under normal as well as faulty conditions. \checkmark
- 7.6 Overcurrent ✓
 Fault current ✓
 Overvoltage
 Undervoltage

- (Any 2) (2)
- 7.7 7.7.1 It must not be possible to touch any live parts \checkmark of an installation \checkmark unless a cover has been removed with the use of a tool or key \checkmark
 - 7.7.2 Electrical equipment should be designed, positioned or protected ✓ such that accessible parts under normal operating conditions ✓ do not reach a temperature that exceeds 70 °C for metal parts and 90 °C for non-metal parts ✓

(3)

(3)

(4)

(4)

7.8	7.8.1	A distribution board is a panel board \checkmark that may be used in a domestic environment, which distributes electricity into different subcircuits \checkmark and provides protection to the subcircuits. \checkmark	(3)
	7.8.2	Bathroom ✓ Above or below cooking appliances	(1)
	7.8.3	The busbar must be appropriate for a possible short current \checkmark that may occur at the supply terminals of the distribution board. \checkmark	(2)
7.9	7.9.1	The function of a miniature circuit breaker is to protect an electrical circuit \checkmark and appliances \checkmark on that circuit from damage caused by overload or a short circuit. \checkmark	(3)
	7.9.2	The contacts that keep the circuit closed are held in by a latch. \checkmark If the current exceeds the rated current of the MCB, the magnetic field set up in the solenoid will be strong enough to pull and release the latch. \checkmark	
		This will open the contacts, disconnecting the current flow through	
		Once the current has been disconnected, the magnetic field will fall	
		away, which will allow the latch to be reset.✓ This will then close the contact again.✓	(5)
	7.9.3	10 A ✓	(1)
	7.9.4	The overload current that it will open \checkmark under overload conditions \checkmark . The fault current that it must be able to contain safely under fault conditions. \checkmark	(4)
	7.9.5	The bimetal strip has two different types of metal bonded together. \checkmark When a current exceeds the rated current the strips heat up. \checkmark The strips are made of different materials, and thus expand at different rates. \checkmark This causes the strip to bend, opening a set of contacts that in turn opens the circuit. \checkmark	(4)
7.10	7.10.1	Opens under overload conditions✓ Opens under earth-fault conditions✓ Opens and closes under normal conditions✓	(3)
	7.10.2	A fault may occur with a toaster if the insulation has worn off the live or neutral \checkmark and they may come into contact with a conducting part of the toaster. \checkmark This will create an earth fault. \checkmark	(3)

		TOTAL SECTION B:	64
	7.11.4	The earth spike is the final part of the earthing system \checkmark that is driven into the mass of the earth to make good contact with the earth. \checkmark	(3)
	7.11.3	The earthing system must have a low resistance. \checkmark In the event of an earth fault \checkmark the current will take the path of least resistance \checkmark and discharge down to earth. \checkmark	(4)
	7.11.2	To provide protection to persons or animals against electric shock. \checkmark To maintain proper functioning of an electrical system. \checkmark	(2)
7.11	7.11.1	Earthing may be described as a system of electrical connections \checkmark to the general mass of the earth \checkmark	(2)

SECTION C: ELECTRONICS AND DIGITAL ELECTRONICS

QUESTION 8: LOGIC

8.1 8.1.1 Analogue system \checkmark (1 8.1.2 Digital system \checkmark (1 8.2 Decimal number system \checkmark , binary number system \checkmark , octal number system, hexadecimal number system. (Any two) (2 8.3 $2 19$ Remainder $2 9 \rightarrow 1 \checkmark$ LSB $2 4 \rightarrow 1 \checkmark$ $2 2 \rightarrow 0 \checkmark$ $2 1 \rightarrow 0 \checkmark$ $1 0 0 1_2 = (1 \times 8) + (0 \times 4) + (0 \times 2) + (1 \times 1) \checkmark$ $1 0 0 1_2 = 8 + 0 + 0 + 1 \checkmark$ (4 8.5 $0 1 1_2 + \frac{1 0 0_2}{1 1 1_2} \checkmark$ (3 8.6 $1 100 - \frac{0111}{1 1 2} \checkmark$ (3 8.7 $8.7.1 \land B \leftarrow X \checkmark$ Correct Gate Symbol = \checkmark (2 $8.7.2 \times 2 A B \checkmark$ (2 $8.7.3 \land A = B \times \checkmark$ (2 $8.7.4 \land B = X \land$ (2 $8.7.4 \land B = X \land$ (2) $8.7 \land A = A = A \checkmark$ (2) $8.7 \land A = A = A \land$ (3) $A = A = A = A \land$ (4) $A = A = A = A \land$ (4) $A = A = A = A \land$ (2) $A = A = A = A \land$ (3) $A = A = A = A \land$ (4) $A = A \land$ (5) $A = A \land$ (5) $A = A \land$ (7) $A = A \land$ (7)				
8.12 Digital system \checkmark (1 8.2 Decimal number system \checkmark , binary number system \checkmark , octal number system, hexadecimal number system. (Any two) (2 8.3 $2 19$ Remainder $2 9 \rightarrow 1 \checkmark$ LSB $2 4 \rightarrow 1 \checkmark$ $2 2 \rightarrow 0 \checkmark$ $2 1 \rightarrow 0 \checkmark$ $2 0 \rightarrow 1 \checkmark$ MSB Therefore $19_{10} = 10011_2$ (5 8.4 $1001_2 = (1 \times 8) + (0 \times 4) + (0 \times 2) + (1 \times 1)) \checkmark$ $1001_2 = 8 + 0 + 0 + 1 \checkmark$ (4 8.5 $011_2 + \frac{100_2}{100_2}$ $111_2 \checkmark \checkmark$ (3 8.6 $1100 - \frac{0111}{011} \checkmark \checkmark$ (3 8.7 $8.7.1$ A $ f B X $ Correct Gate Symbol = \checkmark (2 $8.7.2 X = AB \checkmark \checkmark$ (2 $8.7.3 A B X $ \checkmark (2 $8.7.4 A f B X $ \checkmark (2 $8.7.4 A f B X $ \checkmark (2) $8.7 A A f B X $ \checkmark (2) 8.7 A A f A f A f A f A f A f A f A f A f	8.1	8.1.1	Analogue system✓	(1)
8.2 Decimal number system \checkmark , binary number system \checkmark , octal number system, hexadecimal number system. (Any two) (2 8.3 $\begin{array}{c} 2 & 19 \\ 2 & -4 \\ $		8.1.2	Digital system.✓	(1)
8.3 2 19 Remainder 2 9 \rightarrow 1 \checkmark LSB 2 4 \rightarrow 1 \checkmark 2 2 \rightarrow 0 \checkmark 2 1 \rightarrow 0 \checkmark 2 1 \rightarrow 0 \checkmark 2 1 \rightarrow 0 \checkmark 2 1 \rightarrow 0 \checkmark 2 2 \rightarrow 0 \checkmark 2 1 \rightarrow 0 \checkmark 3 8.4 1 0 0 1 ₂ = (1 x 8) + (0 x 4) + (0 x 2) + (1 x 1) \checkmark 1 0 0 1 ₂ = 9 ₁₀ \checkmark (4) 8.5 0 1 1 ₂ +100 ₂ 1 1 1 ₂ \checkmark (4) 8.6 1100 -0111 0 101 \checkmark (2) 8.7 8.7.1 A B X 0 1 0 1 0 0 \checkmark 1 1 1 1 \checkmark (4) 8.8 A B X A B X (4) 8.8 A B X (4) 8.8 A B X (4) 8.8 A B X (4) (5) (5) (6) (7) (7) (8) (7) (8) (8) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9	8.2	Decima hexade	al number system√, binary number system√, octal number system, ecimal number system. (Any two)	(2)
Therefore $19_{10} = 10011_2$ (5 8.4 $1001_2 = (1 \times 8) + (0 \times 4) + (0 \times 2) + (1 \times 1)) \checkmark$ $1001_2 = 8 + 0 + 0 + 1 \checkmark$ (4 8.5 $011_2 + \frac{100_2}{111_2} \checkmark$ (3) 8.6 $1100 - \frac{-0111}{011} \checkmark \checkmark \checkmark$ (3) 8.7 8.7.1 $A = \sqrt[3]{X} \checkmark$ Correct Gate Symbol = \checkmark (2) 8.7.2 $X = AB \checkmark \checkmark$ (2) 8.7.3 $\boxed{A = B \times 1}_{000} \checkmark$ (2) 8.8 $A = \sqrt[3]{A = AB} \checkmark$ (2) 8.8 $A = \sqrt[3]{A = AB} \checkmark$ (4)	8.3		$2 19 ext{ Remainder}$ $2 ext{ 9} 1 ext{ MSB}$ $2 ext{ 9} 1 ext{ 4} LSB$ $2 ext{ 4} 1 ext{ 7}$ $2 ext{ 2} 0 ext{ 7}$ $2 ext{ 7} 0 ext{ 7}$ $2 ext{ 7} 0 ext{ 7}$ $4 ext{ 7} 0 ext{ 7}$ $2 ext{ 7} 0 ext{ 7}$ $4 ext{ 7} 0 ext{ 7}$	
8.4 $1 0 0 1_{2} = (1 \times 8) + (0 \times 4) + (0 \times 2) + (1 \times 1) \checkmark$ $1 0 0 1_{2} = 8 + 0 + 0 + 1\checkmark$ (4 8.5 $0 1 1_{2} + \frac{10 0_{2}}{11 1_{2}} \checkmark$ (3 8.6 $1100 - \frac{-0111}{0101} \checkmark \checkmark$ (3 8.7 8.7.1 $A = k \checkmark \times$ Correct Gate Symbol = \checkmark (2) 8.7.2 $X = A B \checkmark \checkmark$ (2) 8.7.3 $A = k \checkmark \checkmark$ (2) 8.7.4 $A = k \checkmark \checkmark$ (2) 8.7.4 $A = k \checkmark \checkmark$ (4) 8.8 $A = k \land \checkmark \land \land$			Therefore $19_{10} = 10011_2$	(5)
8.5 8.5 $ \begin{array}{c} 0 1 1_{2} \\ +\frac{10 0_{2}}{11 1_{2}} \\ 11 1_{2} \\ \hline \\ 11 1_{2} \\ \hline \\ \hline \\ 8.6 \end{array} $ (3) 8.7 8.7.1 8.7.2 8.7.2 8.7.2 8.7.2 8.7.3 $ \begin{array}{c} \mathbf{A} \\ \mathbf{B} \\ \hline \\ \mathbf{V} \\ \hline \\ 0 \\ 0 \\ 1 \\ 1 \\ \hline \\ \mathbf{V} \\ \mathbf{V} \\ \hline \\ \mathbf{V} \\ \mathbf{V}$	8.4		$1001_{2} = (1 \times 8) + (0 \times 4) + (0 \times 2) + (1 \times 1) \checkmark$ $1001_{2} = 8 + 0 + 0 + 1\checkmark$ $1001_{2} = 9_{10}\checkmark\checkmark$	(4)
$ \begin{array}{c} +\frac{100^{2}}{111_{2}} \checkmark \checkmark \qquad (3) \\ 8.6 \qquad 1100 \\ -0111 \\ \hline 0101 \checkmark \checkmark \checkmark \qquad (3) \\ 8.7 \qquad 8.7.1 \qquad A \\ B \\ \hline & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ 8.7.2 \qquad X = A.B \checkmark \checkmark \qquad Correct Gate Symbol = \checkmark \qquad (2) \\ 8.7.3 \qquad A \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$	8.5		0 1 12	
8.6 1100 -0111 $0101 \checkmark \checkmark \checkmark \qquad (3)$ 8.7 8.7.2 X = A.B $\checkmark \checkmark$ Correct Gate Symbol = \checkmark (2) 8.7.3 $\boxed{A \ B \ X}$ (2) 8.7.3 $\boxed{A \ B \ X}$ (2) 8.8 8.8 (4)			$+\frac{100_{2}}{111_{2}}$	(3)
$\frac{-0111}{0101} \checkmark \checkmark \checkmark \qquad (3)$ 8.7 8.7.1 $A = k \checkmark \checkmark \qquad Correct Gate Symbol = \checkmark \qquad (2)$ 8.7.2 $X = A B \checkmark \checkmark \qquad (2)$ 8.7.3 $A = B \times \land \qquad (2)$ 8.7.3 $A = B \times \land \qquad (2)$ 8.8 $A = A + A + A + A + A + A + A + A + A + $	8.6		1100	
8.7 8.7.1 $A \to K \times K$ Correct Gate Symbol = \checkmark (2 8.7.2 $X = A.B \checkmark \checkmark$ (2) 8.7.3 $A \to B \times \land$ (2) 8.7.3 $A \to B \times \land$ (2) 8.8 (4) 8.8			$\frac{-0111}{0101} \checkmark \checkmark \checkmark$	(3)
8.7.2 $X = A.B \checkmark$ (2) 8.7.3 $\boxed{A \ B \ X} \\ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \$	8.7	8.7.1	$A = 4$ Correct Gate Symbol = \checkmark	(2)
8.7.3 $\begin{array}{c c} A & B & X \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 1 & 1 \\ \hline \end{array} \\ \end{array} \\ \end{array} $		8.7.2	$X = A.B \checkmark \checkmark$	(2)
8.8 A → K B → K C → K K K K K K K K K K K K K K K K K K K		8.7.3	A B X 0 0 0 0 1 0 1 0 0 1 1 1	(4)
	8.8		A& B(&) C(&) ≥1 C(&) ≥1	

QUESTION 9: COMMUNICATION

		TOTAL SECTION C:	64	
9.10	Light a Have r Are aff Are ph Gives o	and easy to carry around ✓ nultiple functions ✓ fordable for most people ✓ ysically attractive ✓ one the ability to communicate to the four corners of the earth ✓	(5) [32]	
	9.9.4	Metallic shield√	(1)	
	9.9.3	Centre core✓	(1)	
	9.9.2	Dielectric insulator√	(1)	
9.9.	9.9.1	Plastic jacket✓	(1)	
9.8	Commercial broadcasting can be described as one-way communication.✓ In other words, no communication is received back from the receiver✓ or transmitter.✓ These signals are normally transmitted via microwaves✓			
9.7	Monop Dipole	oole antenna√ antenna 1/2 λ√	(2)	
9.6	A radio frequent receive them in	o antenna is a device designed to do two things: It captures radio- ncy signals \checkmark that are then converted to electrical signals by the er, \checkmark and it takes electrical signals from the transmitter and converts nto radio-frequency signals. \checkmark	(3)	
	9.5.2	One cycle√	(1)	
9.5	9.5.1	Amplitude✓	(1)	
9.4	Freque in one	ency is the number of cycles \checkmark an AC wave or signal is able to deliver \checkmark second. \checkmark It is measured in hertz (Hz).	(3)	
9.3	Ground-wave propagation✓ Sky-wave propagation✓ Line-of-sight propagation✓			
9.2	Radio-wave propagation is the transmission of signals ✓ by modulation of electromagnetic waves ✓ with frequencies below those of visible light. ✓			
9.1	They are used to transmit \checkmark signs, signals, writing, images, sounds, data or intelligence of any nature, as a whole \checkmark or in part by wire, radio, electromagnetic, photo-electronic or optical system to a receiver. \checkmark			

GRAND TOTAL: 200