

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2015

AGRICULTURAL SCIENCES P2 MEMORANDUM

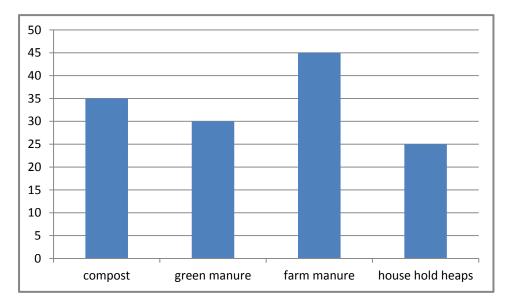
MARKS: 150

This memorandum consists of 10 pages.

QUESTION 1.1 QUESTION 1.2 В√√ E√√ 1.1.1 1.2.1 1.1.2 A√√ 1.2.2 F√√ A√√ 1.1.3 1.2.3 G √√ C√√ 1.2.4 H √√ 1.1.4 $D \sqrt{\sqrt{}}$ В √√ 1.1.5 1.2.5 (5 x 2) (10) $D \sqrt{\sqrt{}}$ 1.1.6 В√√ 1.1.7 В√√ 1.1.8 $D \sqrt{\sqrt{}}$ 1.1.9 1.1.10 C√√ (10 x 2) (20) **QUESTION 1.3 QUESTION 1.4** Vectors $\sqrt{\sqrt{}}$ 1.4.1 diffusion √ 1.3.1 Mesocarp $\sqrt{\sqrt{}}$ biological control $\sqrt{}$ 1.3.2 1.4.2 Stolons $\sqrt{\sqrt{}}$ micro/drip irrigation $\sqrt{}$ 1.3.3 1.4.3 Tensiometer $\sqrt{\sqrt{}}$ hydroponics $\sqrt{}$ 1.3.4 1.4.4 Soil drainage $\sqrt{\sqrt{}}$ 1.3.5 1.4.5 corolla √ (5 x 2) (10) (5 x 1) (5)

TOTAL SECTION A: 45

SECTION A


SECTION B

QUESTION 2: PLANT NUTRITION

2.1	2.1.1	Storage organs in plants• Roots $$ • Stem $$ • Leaves $$ • Tubers $$ • Fruits/seeds/nuts $$ (Any 3 x 1)	(3)
	2.1.2	Chemical process Photosynthesis $$	(1)
	2.1.3	 Requirements of the chemical process Radiant/solar energy/sunlight √ Sufficient carbon dioxide √ Water √ Chlorophyll pigment √ Ideal temperature √ (Any 2 x 1) 	(2)
	2.1.4	Main product of the process stored in storage organs • Sugars/carbohydrates/organic food substances $$	(1)
2.2	2.2.1	 Factors that influence upward water movement Root pressure √ Capillarity √ Adhesion and cohesion √ (3 x 1) 	(3)
	2.2.2	The role played by xylem in water movement Water moves along xylem vessel $$ to replace water lost via transpiration. $$	(2)
	2.2.3	 Functions of water in plants Water transports nutrients from the soil to the roots and to the leaves. √ Water transports the products of photosynthesis from the leaves to the plant organs for storage. √ Water provides structural support to plants. √ Water regulates plant temperature. √ Water provides the medium for metabolic processes such as photosynthesis and respiration. √ (Any 2 x 1) 	(2)

4		AGRICULTURAL SCIENCES P2 (EC/NOVEMBER 2	<u>015)</u>
	2.2.4	Osmosis It is a process where water molecules move from a high water potential to a low water potential $$ through a differentially permeable membrane. $$ (2)	
		Diffusion It is the spontaneous movement of molecules from a region of high concentration to a region of low concentration, $$ until it reaches a dynamic equilibrium. $$ (2)	(4)
2.3	2.3.1	a = nitrogen $$ b = potassium $$ c = calcium $$	(3)
2.4	2.4.1	 Fertiliser that could provide better yield Fertiliser bag A/The first fertiliser bag √ 	(1)
	2.4.2	 Justification for fertiliser bag A The proportion/percentage of nitrogen in Bag A (8) is greater than the proportion of nitrogen in Bag B (1). √ Leafy vegetables require more nitrogen for vegetative growth. √ 	(2)
	2.4.3	Implications of (30) on the bag The figure 30 indicates the percentage mass of the fertiliser $$ that actually contains the elements. $$ OR	
		30 indicates the total amount of nutrients $$ in 100 kg of the mixture. $$	
		OR 30 indicates that the fertiliser contains a 30% mixture $$ of N.PK. $$	(2)

2.5 2.5.1 The performance of different organic fertilisers on the yield of maize.

Bar graph $\sqrt{1}$ Correct heading $\sqrt{1}$ Correct plotting/proportional plotting $\sqrt{1}$ Labelling and units on Y-axis $\sqrt{1}$ Labelling and units on X-axis $\sqrt{1}$

2.6 Active ion uptake

- It is the movement of nutrients against a concentration gradient/from a low to high concentration. \checkmark
- It is brought about by carrier molecule which is present in the cell membrane. \checkmark
- It requires metabolic energy/energy provided by ATP and a suitable enzyme. $\sqrt{}$ (Any 2 x 1)

Passive ion uptake

- Ions move from a higher to a lower concentration. $\sqrt{}$
- It does not need energy from metabolic reactions / ATP is not involved. $\sqrt{}$
- It occurs outside the casparian strip in the cortex. $\sqrt{}$ (Any 2 x 1)

[35]

(4)

(5)

QUESTION 3: PLANT REPRODUCTION

3.1	3.1.1	 Breeding process Hybridisation √ 	(1)
	3.1.2	Justification of the process FIGURE 2 shows better yield $$ than FIGURE 1. $$ OR	
		FIGURE 3 shows better yield $1000000000000000000000000000000000000$	(2)
	3.1.3	 Advantages of hybridisation Hybridisation creates varieties that produce more yield. √ Hybridisation produce plants that grow faster/better. √ Hybridisation produces plants that are more resistant to pests and diseases. √ Hybridisation produces plants that are resistant to cold and heat / unfavourable weather. √ (Any 2 x 1) 	(2)
3.2	3.2.1	Parts of a flower 9 = ovum $$ 3 = stigma $$ 4 = ovary $$	(3)
	3.2.2	 Function of flower stalk It is the flower stalk that holds/supports the flower/fruit in place. √ The flower stalk conducts water and nutrients from the plant to the flower. √ (Any 1 x 1) 	(1)
	3.2.3	 Climatic conditions leading to ablactation Low temperatures inhibits the germination of pollen and thus fruit setting. √ Frost damage flowers. √ Rain moisturises pollen and makes it not to disperse. √ Strong winds blow away insects from pollinating the trees. √ (Any 3 x 1) 	(3)
3.3	3.3.1	Methods of propagation FIGURE A – Grafting $$	
		FIGURE B – Cutting $$	(2)
	3.3.2	 Reasons to practice vegetative propagation Plants that do not produce seeds or viable seeds like roses can only be propagated by grafting or budding. √ Plants propagated by budding or grafting are true to type. √ It is very quick/easier/cheaper to propagate through cuttings. √ 	

• Plants propagated by cutting and grafting, produce flowers/fruits faster. $\sqrt{}$ (Any 3 x 1) (3)

6

- (a) Viruses √
- (b) Vectors $\sqrt{}$
- (c) Fungi√
- (d) Bacteria $\sqrt{}$

3.4.2 Preventative measures for the spread of plant diseases

- Use registered certified disease-free seed or other propagation material. $\boldsymbol{\sqrt{}}$
- Disinfect pruning tools to prevent disease causing organisms from infecting plants through wounds. \checkmark
- Select cultivars that are resistant to bacterial diseases. $\sqrt{}$
- Practice crop rotation using crops that are not susceptible to diseases. \checkmark
- Fumigate storage places and greenhouses. $\sqrt{}$ (Any 3 x 1) (3)

3.5 3.5.1 **Selection**

It is the process in which environmental or genetic influences that will determine if an organisms $\sqrt{}$ thrive better than others as a factor of evolution. $\sqrt{}$

3.5.2 Advantages of gene mutation

- It provides breeding material for conventional plant breeding. $\sqrt{}$
- It contributes to the conservation and use of plant genetic resources. \checkmark
- It contributes to food security. $\sqrt{}$
- It provides additional income to farmers. $\sqrt{}$
- Desirable traits such as disease-resistance can be induced. $\sqrt{}$
- Plants can be muted to bear more fruits, flowers and seeds to increase production $\sqrt{}$ (Any 3 x 1) (3)

3.5.3 **Two important Bt crops in South Africa**

- Bt Maize √
 Bt Cotton √ (2)
 3.5.4 A natural or artificial breeding method
 Selection √ (1)
 3.6 Reason why farmers should control weeds
 Weeds compete with crops for moisture/space/nutrients and light. √
 Weeds interfere with the harvesting of crops. √
 Weeds serve as host plants for insects and pests. √
 - Weeds that are thorny pose health hazards to other plants and animals. $\sqrt{}$

(Any 3 x 1) (3)

[35]

(4)

(2)

QUESTION 4: ANIMAL REPRODUCTION

4.1	4.1.1	Farming system Precision farming $$	(1)
	4.1.2	 Reasons for the use of computers and global satellites To measure the correct environmental conditions. √ To determine if crops are growing at maximum efficiency. √ 	(2)
	4.1.3	(a) Geographic Positioning System (GPS) To determine a precise position on the globe. $$	(1)
		(b) Geographic Information System Computers capture, manage and analyse special data related to crop productivity and field inputs. / It makes sense of all the available data. $$	(1)
4.2	4.2.1	Best water source for sustainable irrigation • Rivers/bigger rivers $$	(1)
	4.2.2	Water source not good for irrigation • Sea water $$	(1)
	4.2.3	 Criteria to determine water quality for irrigation The salinity of the water because if plants absorb too much salt it affects crop yield/saline water is toxic to plants. √ Determine specific electrical conductivity of water/the more salts dissolved, the higher the specific electrical conductivity. √ Determine sodicity/sodium adsorption ratio/higher amounts of sodium ions (na⁺) has detrimental effects on both soil and plants. √ 	
		• Determine toxic ions such as chloride and lithium. $\sqrt{(Any 2 x 1)}$	(2)
	4.2.4	 Example of flood irrigation Basin/border irrigation √ Furrow irrigation √ 	
		• Bed irrigation $$ (Any 1 x 1)	(1)

4.3 4.3.1 **Drainage layouts**

- A Parallel/grid drainage system $\sqrt{}$
- B Herringbone drainage system $\sqrt{}$

4.3.2 Factors to consider before installing pipe drain system

- Soil information √
- Wetland impact √
- Economic feasibility regarding installation costs $\sqrt{}$
- Present and future cropping strategies. $\sqrt{}$
- Environmental impacts associated with drainage discharge. $\sqrt{}$
- Easements and right of way to avoid any potential conflict. $\sqrt{}$
- Spacing of drains $\sqrt{}$
- Pipe diameter $\sqrt{}$
- Drain slope or gradient $\sqrt{}$
- Layout of drains $\sqrt{}$

4.3.2 **Disadvantages of open drains**

- High maintenance cost of cleaning or removing fallen material. $\sqrt{}$
- Ditches may serve as breeding ground for weeds and insect pests. \checkmark
- Restricts accessibility of vehicles. $\sqrt{}$
- Some field operations cannot be done freely using heavy farm machinery. √ (Any 2 x 1) (2)

4.4 4.4.1 Difference in aspects of monoculture and crop rotation

Monoculture	Crop rotation
(a)	(b)
The same crop is planted each	Different crops are planted each
year/The plants take the same	year. The plants will take
mineral nutrients from the soil	different nutrients from the soil
each year. \checkmark	each year. \checkmark
(C)	(d)
Diseases and pests settle in the	Disease and pests are easier to
soil and will be very hard to	control because the diseases
remove. √	and pests of one crop may not
	affect other crops. $$

4.5 (a) Primary soil tillage/cultivation

It involves the first intensive operation, $\sqrt{}$ which cut, turn and shatter the soil with relatively deep penetrating implements. $\sqrt{}$ (2)

(b) Secondary cultivation/tillage

It comes after primary tillage. / It involves seedbed finishing operations $\sqrt{}$ such as pulverising, levelling, firming the top soil, weed control, destroying soil crust and ridging. $\sqrt{}$ (2) (4)

Copyright reserved

(4)

(2)

(Any 2 x 1) (2)

sect

4.6	4.6.1	 Managerial practices Regular stocking √ Feeding √ Protection from predators √ 	(Any 2 x 1)	(2)
	4.6.2	Common species stocked in South Africa • Bluefish/shad/elf $$ • Trout $$ • Abalone $$ • Seaweed $$ • Oysters $$ • African catfish $$ • Prawns $$ • Mussels $$ • Tilapia $$	(Any 2 x 1)	(2)
	4.6.3	Open-through flow system An open through flow system allows water to system once before it is discharged $$ and can tanks, if there is an abundant and continuous water. $$	n be used in indoor	(2)
4.7	4.7.1	Greenhouse $$		(1)
	4.7.2	 Environmental factors to consider Morning sunlight in the east √ Slope / well drained land √ Source of water supply √ Electricity supply √ Accessibility by trucks and other vehicles Consider the direction of storm water √ Temperature √ Plant diseases and pests √ 	√ (Any 2 x 1)	(2)
	4.7.3	 Materials for greenhouse Transparent / micron plastic / polyethylene Shade nettings / cloth √ Glass √ 	€√	(2) [35]
			TOTAL SECTION B: GRAND TOTAL:	105 150

AGRICULTURAL SCIENCES P2

(EC/NOVEMBER 2015)

<u>10</u>