

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2013

AGRICULTURAL SCIENCES P1

MARKS: 150

TIME: 2¹/₂ hours

This question paper consists of 14 pages, including an answer sheet.

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions from BOTH SECTIONS A and B.
- 2. SECTION A (QUESTION 1) must be answered on the attached ANSWER SHEET.
- 3. Place your ANSWER SHEET for SECTION A (QUESTION 1) within your ANSWER BOOK.
- 4. SECTION B (QUESTIONS 2 to 4) must be answered in the ANSWER BOOK.
- 5. Start each question from SECTION B on a NEW page.
- 6. Read the questions carefully and make sure you answer what is asked.
- 7. Number the answers correctly according to the numbering system used in this question paper.
- 8. DO NOT SPLIT the answers to the questions.
- 9. Write neatly and legibly.

SECTION A

QUESTION 1

1.1 Various options are provided as possible answers to the following questions. Choose the correct answer and make a cross (X) over the appropriate letter in the block (A–D) next to the question number (1.1.1–1.1.10) on the attached ANSWER SHEET. No marks will be allocated if more than one cross (X) appears for an answer.

Example:	1.1.11	Α	В	\searrow	D

- 1.1.1 The smallest form of matter that can exist alone is a/an ...
 - A element.
 - B atom.
 - C isotope.
 - D compound.
- 1.1.2 The small groups of atoms within a molecule that are responsible for certain properties of the molecule and the reactions which are taking place are called ...
 - A ionic groups.
 - B phosphate groups.
 - C functional groups.
 - D radical groups
- 1.1.3 Molecules with the same molecular formula but different arrangement in atoms are isomers. The following illustrations show the isomers of ...

- A methane.
- B propane.
- C butane.
- D pentane.

- 1.1.4 The unit of coherent soil particles which is formed by natural processes is called ...
 - A gravel.
 - B clay.
 - C peds.
 - D silt.
- 1.1.5 The instrument used to measure the density of soil and water mixture is called ...
 - A photometer.
 - B hydrometer.
 - C thermometer.
 - D barometer.
- 1.1.6 The field method for determining soil texture is very important to give the soil characteristics. The diagram below shows soil which is accumulated with particles of ...

- A sand.
- B loam.
- C clay loam.
- D silt.
- 1.1.7 The following are the factors that influence the bulk density of soil except ...
 - A amount of organic matter in the soil.
 - B colour of soil.
 - C compaction of soil.
 - D degree of cultivation.
- 1.1.8 The type of soil water which forms a very thin film around the soil particles and is not available to plants.
 - A Hygroscopic water
 - B Gravitational water
 - C Capillary water
 - D Cohesion water
- 1.1.9 A soil surface horizon lacking fine stratification and which is slightly coloured with low organic carbon is ...
 - A orthic.
 - B vertic.
 - C melanic.
 - D humic.

- 5
- 1.1.10 The process occurs when the nitrogen supply is limited which lead to the situation whereby the soil microbes compete with plants for the fertiliser nitrogen is called ...
 - A mineralisation.
 - B immobilisation.
 - C assimilation.
 - D solubilisation.

(10 x 2) (20)

1.2 In the table below, a statement and TWO answers are given. Decide whether the statement in COLUMN B relates to A only, B only, both A and B or none of the answers in COLUMN A. Choose the correct answer and make a cross (X) in the appropriate block (A–D) next to the question number (1.2.1–1.2.5) on the attached ANSWER SHEET.

Example:		COL	UMN A	COL	UMN B			
	A: Orange		Base or alkaling					
	E	B: Soap		Dase of a				
						1		
Answer:	Th	ne stateme	nt refers to:					
		Only A	Only B	A and B	None			
		А	B	C	D			
		COLUM	IN A		COLUMN B			
1.2.1	A: Adhesion B: Cohesion			Water force of attraction				
1.2.2	A:	A: Amino acids		Monomore of all carbohydratos				
	B: Glucose			Monomers of all carbonydrates				
1.2.3	A:	Buffer		The molecules that prevent large				
	B:	B: Neutraliser		changes in the pH solutions				
1.2.4	A:	Catabolic		Refers to a pr	ocess that oc	curs when the		
	B:	Anabolic		molecules or the compounds are broken down into simpler substances				
1.2.5	A:	Homoger	ious	The factors de	otormining soi			
	B:	Non home	ogenous					

(5 x 2) (10)

6		AGRICULTURAL SCIENCES P1 (NOVEMBER 2	013 <u>)</u>
1.3	Give C the ter ANSW	ONE TERM/PHRASE for each of the following descriptions. Write only m/phrase next to the question number (1.3.1–1.3.5) on the attached /ER SHEET.	
	1.3.1	The reaction occurs when an isotope of an atom gives off bursts of energy	
	1.3.2	The point at which all the pores between soil particles are filled with water	
	1.3.3	A polymer found in the plant cell that makes the cells woody and sturdy	
	1.3.4	The chemical reaction that occurs when water is added to a molecule to break the bonds holding its atoms together	
	1.3.5	The close, solid packing of soil particles (5 x 2)	(10)
1.4	Chang them T (1.4.1-	e the UNDERLINED WORD(S) in the following statements to make RUE. Write only the appropriate word(s) next to the question number -1.4.5) on the attached ANSWER SHEET.	
	1.4.1	Electrons are positively charged and are found in the nucleus of an atom.	
	1.4.2	A <u>gas</u> has a distinct volume independent of its container but without specific shape.	
	1.4.3	Soil particles within the aggregates are held together by atomic forces.	
	1.4.4	<u>Neutralisation</u> is the decomposition process by which the compounds are rapidly broken down into elements such as ammonium, sulphur, phosphate ions, carbon dioxide and water.	
	1.4.5	The loss of water from the soil surface into the atmosphere in a vapour form is called transpiration	
		(5 x 1)	(5)
		TOTAL SECTION A:	45

START THIS QUESTION ON A NEW PAGE.

QUESTION 2: BASIC AGRICULTURAL CHEMISTRY

2.1 Nutritionists conducted a research on the use of biofuel waste in animal feed, with possible benefits for the rural agricultural communities. The objective is to make biofuel more economical to produce and create manufacturing industries in semi-urban and rural areas. This can include biofuel processing or the industries created to add value to the processing of by-products such as oil cake meal. This process will eliminate high pollution of air with carbon dioxide and the reduction of the greenhouse effect. Biofuel production ended up being established in the animal feed market and is increasing rapidly.

2.1.1	Suggest the role that the production of biofuel can play in improving livestock nutrition.	(1)
2.1.2	How can the biofuel industry help rural areas and small scale farmers?	(1)
2.1.3	Mention the benefits to the environment of using biofuel.	(1)
2.1.4	Explain why the production of biofuel is increasing.	(1)

(1)

(3)

2.2 Use the periodic table below to answer the following questions.

1.00794												at die			10222	OT	4.00260
drogen	ZA	attes										<u>3A</u>	4A	<u>5A</u>	6A	7A	Heium
11	Pa	a server											ĉ		8	9	10
A GAT	0.012182	-										D	12.0107	N	0	F	Ne
Lithiam	Berylium	2 2								-		Boron	Carbon	Nitrocen	15.9994 Oxyden	Fluorine	Neon
11	12	G 133										13	14	15	16	17	18
Na	Mq	Store I.										AI	Si	P	S	CI	Ar
2.989769	24.3050	12.04										26.9815385	28.0855	30.973762	32.065	35.453	39.948
Sodium	Magnesium	3B	4B	5B	6B	7B		- 8B -		1B	2B	Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	SC	11	V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44,955912 Seconda um	47.887	50.9415 Vacadum	51.9961 Chromium	54.938045	55.845	58.933195	58.6934	63.546	65.38	69.723	72.64	74.92160	78.96	79.904	83.798
37	38	39	40	41	42	43	44	45	46	47	48 48	Gabum 49	Germansum 50	Arsenic 51	Selenium 52	Bromine 53	Kryptor 54
Rh	Sr	Y	71	Nh	Mo	Tr	Ru	Rh	Pd	An	Cd	In	Sn	Sh	To		Yo
15.4678	87.62	88.90585	91,224	92,90638	95.96	(98)	101.07	102 90550	106.42	107 8682	112 411	114.818	118 710	121 780	177.60	126 90447	131 201
tubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
9054519	137.327	States and a state of the state	178.49	180.94788	183.84	186.207	190.23	192.217	195.084	196.966569	200.59	204.3833	207.2	208.98040	[209]	[210]	[222]
07	Banum	Lanthanides	Hafnism	Tantalum	Tungsten	Rhenium	Osmium	Indium	Platinum	Gold	Mercury	Thallom	Lead	Bismuth	Polonium	Astatine	Radon
Er	Da	09-103	DF	Dh	100 Ca	Dh	100	109	De	Be	112	113	114	115	116	117	118
17731	nd	In all	12671	12581	5y	DI1 17771	175	IVIL	US	rg	Cn	UUL	ouq	oup	Uun	Uus	Uuc
rancium	Radium	Actinides	Rumerlordium	Dubnium	Seaborgium	Bohnum	Hassum	Metherium	Carmetadium	Roentoenum	Copernicium	Ununtrium	Ununousdium	Ununcentium	i Jounhensum	Ununsectium	Ununoctin
1																	
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Lanthan	ides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
		100	138.90547	140.116	140.90765	144.242	[145]	150.36	151.964	157.25	158.92535	162.500	164.93032	167.259	168.93421	173.054	174,966
		13.4	Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Tertium	Dysprosium	Hoimium	Erbium	Thulium	Ytterbium	Lutetias
		120	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Actinide	S	AC	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			[227]	232.03806	231.03588	238.02891	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]

- 2.2.1 Identify the lightest element from the periodic table.
- 2.2.2 Group 18 on the periodic table is composed of gases that are chemically inactive and cannot react with others as indicated in the periodic table grouping. Suggest the name given to this group and give TWO examples.
- 2.2.3 Copy and complete this table in your answer book.

ELEMENT	VALENCY ELECTRONS	ATOMIC NUMBER	MASS NUMBER	
Magnesium				
Sulphur				(6)

8

2.3 The illustration below shows the types of chemical bonding. Answer the questions based on these illustrations.

- 2.3.1 Identify the type of bond shown by diagrams **A** and **B**.
- 2.3.2 Differentiate between the two types of bonds, **A** and **B** you have mentioned in QUESTION 2.3.1 above.
- 2.3.3 Draw the Lewis structure of the sodium chloride (NaCl) and the magnesium oxide (MgO) respectively and also show how bonding is formed with cations and anions.
- 2.4 The table below shows the fat content of different nutritional values of fats. Analyse it and answer the questions that follow.

Nutritional value per 100 g	Olive oil (g)	Sunflower (g)	Hard margarine	Butter (g)
Total fat	98	91,6	80	81
Saturated fat	14	12,0	42	51
Unsaturated fat	73	17,0	28	20
Polyunsaturated	11	59,0	10	03

- 2.4.1 Draw a bar graph to compare the amount of saturated, unsaturated and the polysaturated fat in lipids that are analysed in the above table. (6)
- 2.4.2 Distinguish between the saturated and the unsaturated fat. (2)
- 2.4.3 Mention any TWO functions of fats/lipids in living organisms. (2)
- 2.5 The structure below shows the structural formula of an incomplete polypeptide chain.

- 2.5.1 Complete the structure and show how peptides bonds are formed.
- 2.5.2 Define *polypeptide*.

(2)

(2)

(4)

(2)

(1) [**35**]

START THIS QUESTION ON A NEW PAGE.

QUESTION 3: SOIL SCIENCE

- 3.1 The sieve method is one of the important methods to determine the soil texture. Before sieving, the soil sample is weighed and then placed in the top sieve. The entire set of sieves vibrate automatically, or can be shaken by hand. Soil samples should be crushed to break the peds before sieving. The soil sample is usually dried and any organic matter is burned off or removed. Thereafter the individual weights are calculated as a percentage of the total weights. In an experiment 3 800 g of soil mass was taken to determine the weights of different sizes which are as follows, 1 700 g of sand, 1 200 g of clay and 900 g of silt.
 - 3.1.1 Calculate the percentage weight of sand in the soil sample. (3)
 - 3.1.2 Apart from the sieve method, mention the other TWO methods that are used in determining soil texture.
 - Why should the farmer know the textural class of his/her soil? 3.1.3 (1)
- 3.2 The illustrations below show the different types of soil structures that are found in the soil.

3.2.1 Identify the types of soil structure from A-F.

- Suggest TWO factors that influence the development of soil 3.2.2 structure.
- 3.2.3 Indicate TWO methods that a farmer can apply to improve the soil structure.

(6)

(2)

(2)

(2)

3.4

3.5

3.3 The diagram below shows the development of master horizons and the schematic representation of a soil profile. Answer the questions based on it.

Use the diagram above and relate the horizons with the following characteristics:

3.3.1	The horizon formed by marked loss of soil structure	(1)
3.3.2	Mineral particles are found in this horizon	(1)
3.3.3	Contains only inorganic material	(1)
3.3.4	Mixture of inorganic and fully decomposed organic matter	(1)
3.3.5	Material from which soil is directly formed	(1)
3.3.6	Physical weathering occurs in it	(1)
Carbon matter r combine	dioxide from the root respiration and the decomposition of organic reacts with water to form carbonic acid. Carbon dioxide in the air es with rain water to also form carbonic acid.	
3.4.1	Carbon dioxide + water = carbonic acid	
	Express this as a chemical equation.	(2)
3.4.2	Indicate THREE functions of carbon dioxide in soil.	(3)
Soil col	our has a great influence on the fertility and productivity of soil.	
3.5.1	Compare the interpretation of dark coloured and light coloured soils based on crop productivity.	(4)

<u>12</u>		AGRICULTURAL SCIENCES P1 (I	NOVEMBER 2013)					
3.6	Bulk density is the mass per unit volume of any substance. The sample of oven dried soil has a mass of 560 g and 75 cm ³ of volume.							
	3.6.1	Use the information above to calculate the bulk density of the sample.	e soil (4)					
	3.6.2	Supply ONE factor influencing bulk density of soil.	(1) [35]					
START THIS QUESTION ON A NEW PAGE								

QUESTION 4: SOIL SCIENCE

4.1 Analyse the schematic representation of the nitrogen cycle below.

Indicate which of the processes mentioned in the nitrogen cycle above result in:

4.1.1	Conversion of inorganic nitrogen to another inorganic form.	(1)
4.1.2	Conversion of organic nitrogen to inorganic nitrogen.	(1)
4.1.3	Conversion of inorganic nitrogen to organic nitrogen.	(1)
4.1.4	Briefly explain the phenomenon/process in the nitrogen cycle that turns water to a green colour caused by algae growth.	(2)
4.1.5	Differentiate between nitrification and denitrification.	(2)

4.2 The following graph represents soil temperatures taken at different depth positions in the soil.

	4.2.1	Indicate the depth of soil which has the least difference between day and night temperatures.	(1)
	4.2.2	Describe the differences in soil temperature in a soil at a depth of 1 cm and 10 cm.	(2)
	4.2.3	Justify the response given in QUESTION 4.2.2 above.	(2)
	4.2.4	Identify THREE factors influencing soil temperature, beside the one shown in the graph above.	(3)
4.3	Tabulate organic	e any THREE human activities that can increase and decrease the matter content of soil.	(6)
4.4	Farmers	tend to classify soil according to texture, structure and fertility.	
	4.4.1	Briefly explain FOUR reasons for soil classification.	(4)
	4.4.2	Re-arrange the following steps of soil classification according to their correct sequence.	
		 Establishment of the soil form Demarcate the soil series Dig a soil profile or clean an existing soil profile Identify the series characteristic of soil Demarcate the master horizon Identify the diagnostic horizon 	(6)
4.5.	Compos be deve	t is one of the most popular and accessible organic fertilisers that can loped using household waste material.	
	4.5.1	Briefly explain the procedure that can be followed when designing a compost heap to maximise nitrogen assimilation in soil.	(4) [35]

TOTAL SECTION B: 105

GRAND TOTAL: 150

ANSWER SHEET AGRICULTURAL SCIENCES P1

NAME AND SURNAME:

SECTION A

QUESTION 1.1

1.1.1	А	В	С	D
1.1.2	А	В	С	D
1.1.3	А	В	С	D
1.1.4	А	В	С	D
1.1.5	А	В	С	D
1.1.6	А	В	С	D
1.1.7	А	В	С	D
1.1.8	А	В	С	D
1.1.9	А	В	С	D
1.1.10	А	В	С	D
			(10 x	2) (20)

QUESTION 1.2

	ONLY A	ONLY B	BOTH A and B	None
1.2.1	А	В	С	D
1.2.2	А	В	С	D
1.2.3	А	В	С	D
1.2.4	А	В	С	D
1.2.5	А	В	С	D
		(5 x 2) (10)		

QUESTION 1.3

1.3.1	
1.3.2	
1.3.3	
1.3.4	

1.3.5 (5 x 2) (10)

QUESTION 1.4

1.4.1	
1.4.2	
1.4.3	
1.4.4	
1.4.5	

(5 x 1) (5)

