

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2015

MECHANICAL TECHNOLOGY MEMORANDUM

MARKS: 200

This memorandum consists of 10 pages.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

- 1.1 C ✓
- 1.2 D√
- 1.3 B√
- 1.4 B ✓
- 1.5 B ✓
- 1.6 A ✓ 1.7 D ✓
- 1.8 B√
- 1.9 D√
- 1.10 B ✓
- 1.11 B√
- 1.12 C√
- 1.13 C ✓
- 1.14 C ✓
- 1.15 A ✓
- 1.16 B√
- 1.17 B ✓
- 1.18 A ✓
- 1.19 C ✓
- 1.20 B ✓

QUESTION 2: SAFETY

2.1	2.1.1	True ✓	(1)
	2.1.2	True ✓	(1)
	2.1.3	False ✓	(1)
	2.1.4	False ✓	(1)

- 2.2 Ensure that there is no oil or grease on the floor. \checkmark
 - Check that the tool rest is not more than 3 mm away from the grinding wheel surface. ✓
 - If the wheel is running unevenly dress it with an emery-wheel dresser. ✓
 - Grind only on the face of a straight grinding wheel and never on the side of the wheel. ✓
 - Use the various wheels only for their intended purpose.
 - Never force grind so that you cause the motor to slow or stop.

(Any 4 x 1) (4)

(20 x 1)

[20]

- All machinery must be fitted with an efficient stopping and starting device. ✓
 - Never start a machine while another person is repairing, cleaning, oiling or adjusting or even dangerously close to it. ✓
 - Machines with foot-operated pedals should have an automatic locking device to stop.
 (Any 2 x 1)
 (2)

[10]

QUESTION 3: TOOLS AND EQUIPMENT

3.1	 Shou A tap The of A tap The tap The tap 	Id be used in the correct order (taper tap first). \checkmark o must be entered squarely in the tap wrench. \checkmark correct size tapping drill must be used. \checkmark o is at a right angle to the stock once cutting has started. cap is turned forwards a part-turn and then turned backwa on to break off the chippings.	urd about half (Any 3 x 1)	(3)
3.2	Cutting	fluid or cutting paste 🗸		(1)
3.3	To compare the threads on a bolt to the teeth cut on the gauge or To assess the pitch of the bolt. \checkmark		(1)	
3.4	 Alwa Alwa beco Alwa Chec 	ys select correct blade. \checkmark ys clean cuttings out of slots and guides to prevent blade ming clogged. \checkmark ys adjust down pressure in order not to overload. k that the filler tank is in a serviceable state.	s from (Any 2 x 1)	(2)
3.5	Change	s the welding current from AC to DC. \checkmark		(1)
3.6	 It prevents bolts and nuts from loosening. ✓ It prevents bolts or studs from breaking. ✓ It prevents castings from warping. (Any 2 x 1) 		(2)	
3.7	To cut n	naterial by means of an electrical method. \checkmark		(1)
3.8	Always Ensure	keep blades sharp and in good condition. \checkmark guards are in place and operational.	(Any 1 x 1)	(1) [12]
QUE	ESTION 4	I: MATERIALS		['2]
4.1	Open-	hearth furnace 🗸		(1)
4.2	 4.2.1 Refers to the material's ability to absorb forces and flex in different directions ✓ and return to its original shape when the load is removed. ✓ 			(2)
	4.2.2 Refers to the material's ability to change shape by stretching it along its length, ✓ or to be drawn into wire form. ✓			
	4.2.3 Refers to the material's behaviour when fractures occur ✓ with little or no deformation e.g. glass. ✓			(2)
	4.2.4	Refers to the materials ability to be reshaped in all direct without cracking e.g. lead. \checkmark	ctions ✓	(2)
	4.2.5	Refers to the material's ability to change shape perman	ently. 🗸	(1)

4.3 • Water and salt. ✓

4

- Tap water. ✓
- Fused or liquid salts. ✓
- Molten lead.
- Soluble oil.
- Oil or air.

QUESTION 5: TERMINOLOGY

5.1 Set the indexing for 6(six) divisions(six flat sides) Calculate the distance x across the flat sides.

$$Sin \Theta = \frac{x}{100} \checkmark$$

$$X = Sin 60^{\circ} \times 100 \checkmark$$

$$X = 0,866 \times 100 \checkmark$$

$$X = 86,6 \text{ mm} \checkmark$$

$$Sin \Theta = \frac{1}{2} \text{ min} \text{ for a start } - \frac{1}{2} \text{ min} \text{ for a start } - \frac{1}{2} \text{ min} \text{ for a start } - \frac{1}{2} \text{ min} \text{ for a start } - \frac{1}{2} \text{ min} \text{ for a start } - \frac{1}{2} \text{ min} \text{ min} \text{ for a start } - \frac{1}{2} \text{ min} \text{ for a start } - \frac{1}{2} \text{ min} \text{ for a start } - \frac{1}{2} \text{ min} \text{ for a start } - \frac{1}{2} \text{ min} \text{ for a start } - \frac{1}{2} \text{ min} \text{ min}$$

Depth of cut = $\frac{Dia.of shaft - distance across flat side}{2}$

$$=\frac{100-86,6}{2}$$
 \checkmark

Depth of cut = 6,7 mm \checkmark

- 5.2 Release the lock nuts of the compound slide. \checkmark
 - Swing the compound slide to half the included angle. \checkmark
 - Tighten the lock nuts (take care not to over tighten). ✓
 - Mount the cutting tool in the tool holder in the tool post. \checkmark
 - Set the cutting tool to the centre of the tailstock. ✓
 - Use the compound slide feed handle and feed the cutting tool slowly into the work piece. ✓
 - Proceed to the end of the cutting length. ✓
 - Return to the starting position and feed the cutting tool in for the next cut. ✓
 - Repeat the procedure until the taper is completed. ✓
 - On completion, test the taper with the taper ring gauge for size and correct angle. ✓

5.3 Taper angle =
$$\frac{D-d}{2 x L}$$

$$=\frac{90-80}{2 X 180} \quad \checkmark -$$
$$=\frac{10}{360} \checkmark$$
$$= 0,027 \checkmark$$
$$\Theta = 1^{\circ}59' \checkmark$$
$$\Theta = 1^{\circ}35' \checkmark$$

The angle is 1 degree and 35 minutes. \checkmark

Please turn over

(10)

(6)

5.4	$\sin \Theta = \frac{X}{70}$	
	X = 70 Sin ⊖ ✓	
	= 70 Sin 45° ✓	
	x = 49,5 mm ✓	
	Depth of cut = $\frac{70-x}{2}$ \checkmark	
	$=\frac{70-49,5}{2}$	
	= 10,25 mm ✓	(6)
5.5	Indexing: Number of turns = $\frac{40}{N}$ Number of turns = $\frac{40}{5}$ \checkmark Number of turns = 8 full turns of the shank \checkmark	(2)
QUE	TION 6: JOINING METHODS	[30]
6.1	t is permanent joints that do not have to be dismantled or serviced. \checkmark	(1)
6.2	 Flux is used together with soldering to dissolve metal oxides and impurities on the metal ✓ This allows the solder to flow into the joint. ✓ The soldered joints are usually heated by an electric soldering iron or LP gas blowtorch. ✓ The solder is applied when the surfaces are heated to melting point. ✓ 	(4)
6.3	łard soldering. ✓/Brazing	(1)
6.4	The more welding runs that are required in a welding joint, the greater the heat in the parent metal. \checkmark It can lead to stress and distortion if not managed correctly. \checkmark	(2)
6.5	Sizes of weld depends on the type of weld. \checkmark The size of the weld will affect how many weld runs will be needed to complete the joint. \checkmark	(2)
6.6	 Square butt ✓ Single bevel butt ✓ Double bevel butt ✓ Single V-butt ✓ Double V- butt ✓ Edge ✓ Single-U-Butt ✓ Stud ✓ 	(8)
6.7	Type of material 🗸	

- Type of material. ✓
 Type of welding rod. ✓
- Presence of oxygen/hydrogen ✓
- Preparation ✓

(4)

(2)

- 6.8 6.8.1 Fillet
 - 6.8.2 Plug or slot
- 6.8.3 Stud (3) [25] QUESTION 7: FORCES
- 7.1 7.1.1 If a system of forces acts on a body but a single force keeps the body at rest, ✓ the single force is known as the equilibrant of the system of forces. ✓
 - 7.1.2 If three forces, whose lines of action meet at a point, ✓ can be represented in magnitude and direction by the sides of a triangle, they are in equilibrium. ✓ (2)
 - 7.1.3 If two or more forces have the same effect as a single force, \checkmark these forces are called the components of the single force. \checkmark (2)
- 7.2 7.2.1 $8 \text{ cm} \quad C \checkmark \quad 8 \text{ cm}$ $30^{\circ} \quad 30^{\circ}$ $B \checkmark \quad A \checkmark$ 8 cm 8 cm $30^{\circ} \quad 30^{\circ}$ $B \checkmark \quad A \checkmark$ 8 cm $30^{\circ} \quad 30^{\circ}$ $30^{\circ} \quad 30^{\circ}$ $30^{$

7.2.3 Because the force diagram's end point is the same as its starting point. \checkmark (1)

7.2.2

(3)

7.3	7.3.1	$RR \times 10 = (6 \times 3) + (5 \times 8) \checkmark$ = 18 + 40 RR = 58/10 $RR = 5,8 N \checkmark$		
		RL X 10 = $(5 \times 2) + (6 \times 7) \checkmark$ = 10 + 42 L = 52/10 RL = 5,2 N \checkmark		(4)
	7.3.2	BM A = (5,2 x 3) ✓ = 15,6 N/m ✓ BM B = (5,2 x 8) − (6 x 3) ✓ = 23,6 N/m ✓		(4)
	7.3.3	RL + RR = DOWN FORCES 5,2N + 5,8N = 6N + 5N 11N = 11N ✓		(1)
7.4	Cross	sectional area = $(32 \times 32) - (26 \times 26) \checkmark$ = 1024 - 676 = 348 mm ² ✓ Stress = $\frac{Force}{Area}$ = $\frac{70 \times 10^3}{\frac{348}{10^6}} \checkmark$ Stress = 2011494253 Pa ✓ OR = 2011,49 x 10 ⁶ Pa Stress = 2011,49 MPa ✓	Load: 70 kN = 70 x 10 ³	(5)
7.5	7.5.1	Y 30° X		(1)
	7.5.2	X = F Cos 30°		
		= 220 x 0,866		
		Horizontal component = 190, 52 N 🗸		
		Y = F Sin 30°		
		= 220 x 0,5		
		Vertical component = $110 \text{ N} \checkmark$		(2) [30]

7

QUESTION 8: MAINTENANCE

8.1 8.1.1 Unbalanced wheels will cause: Unnecessary tyre wear. ✓ • Poor driving condition. ✓ • Excessive wear on the steering and suspension. \checkmark • Shaking of the wheel assembly from side to side (wheel shimmy). ✓ (4) 8.1.2 Overloading of machines: When a machine is overloaded it will cause the lubricating barrier of oil to be squeezed out of the machine bearings. \checkmark This results in metal to metal contact that causes more friction • due to heat. ✓ Metal surfaces become scratched and scored, which will finally seize the operating system. (Any 2 x 1) (2) 8.2 It is the outward tilt of the wheel at the top \checkmark away from the vehicle when viewed from the front. \checkmark 8.3 It is the setting of an angle relative to the true vertical line, \checkmark as viewed from the front or back of the vehicle. \checkmark

OR

Kingpin inclination is the inward tilt from the vertical in degrees.

8.4

(2)

(2)

9.3

QUESTION 9: SYSTEMS AND CONTROL

- 9.1 The handbrake lever pulls on a single cable, ✓ which is coupled to a pivoted T-piece to transmit the pull identically or evenly to both rear brakes, ✓ or there may be two cables from the handbrake lever, one to each of the rear brakes. ✓
- 9.2 When the driver pushes down on the clutch pedal, a push rod is forced into the master cylinder. ✓
 - As the push rod moves down into the master cylinder, the rod forces a piston down the cylinder. ✓
 - This action puts pressure on the hydraulic fluid in the cylinder, and some of the fluid is forced out. ✓
 - The fluid flows through a tube or pipe into a servo cylinder at the clutch. \checkmark
 - The fluid flowing into the servo cylinder from the master cylinder, forces the piston in the servo cylinder to move. ✓
 - This movement is carried through a push rod to the release lever, thus releasing the clutch. \checkmark

 $\frac{Revs of final driven}{Revs of first driver} = \frac{Product of Number of teeth on all the drivers}{Product of Number of teeth on all the driven}$ $\frac{\frac{N_D}{N_A} = \frac{T_A}{T_B} \times \frac{T_C}{T_D} \checkmark$ $N_D = \frac{T_A}{T_B} \times \frac{T_C}{T_D} \times N_A \checkmark$ $= \frac{20}{80} \times \frac{63}{42} \times 12 \checkmark$ $N_D = 4.5 \checkmark$ Rotational frequency of driven shaft = 4,5 r/s. \checkmark

9.4 Determine the effective tension:

Given: $\frac{T_A}{T_B} = 2:1 = 2 \text{ AND } T_A = 600$ $T_B = \frac{600}{2} = 300 \text{ N } \checkmark$ Effective tension in belt $= T_A - T_B$ $= 600 - 300 \checkmark$ $= 300 \text{ N } \checkmark$ $\frac{Distance moved}{S} = \prod \text{ X D X N}$ $= \prod \text{ X } \frac{300}{1000} \text{ X } \frac{950}{60} \checkmark$ = 14,92 m/sPower transmitted $= \frac{300 \times 14,92}{1000} \checkmark$ $= 4,48 \text{ kW } \checkmark$ (6)

- 9.5 Pressure = $\frac{Force}{Area}$ = $\frac{7500}{3}$ \checkmark = 2 500 Nm² \checkmark = 2 500 Pa \checkmark (3)
- 9.6 It draws in fluid as it is pulled back (or retracted) ✓ and expels it on the forward stroke. ✓

(2) [**25]**

(3)

(6)

(5)

(EC/NOVEMBER 2015)

QUESTION 10: PUMPS

- 10.1 A Inlet port ✓
 - B Driven gear ✓
 - C Driver gear ✓
 - D Casing ✓
 - E Outlet port ✓

(5)

- 10.2 When one of the vanes moves past the inlet port, the space between this vane, the rotor and the housing increases gradually. ✓
 - This causes a vacuum in the space, which causes oil to be drawn from the sump. ✓
 - When the next vane moves past the inlet port, the oil is trapped and is carried along by the rotating rotor. ✓
 - Due to the eccentric rotor, the space now decreases and the oil is pressurised. ✓
 - The first vane now moves past the outlet port while the space is still decreasing. ✓
 - The decreasing space and the next vane force the oil through the outlet port to the oil channels. ✓
 (6)
- 10.3 Pumping grout/cement ✓
 - Pumping lubrication oil \checkmark
 - Pumping marine diesel fuel ✓
 - Pumping mining slurry ✓
 - Pumping oilfield mud
- 10.4 Grout/cement pump ✓
 - Lubrication oil pump ✓
 - Marine diesel fuel pump ✓
 - Mining slurry pump ✓
 - Oilfield mud motors ✓
 - Winery use ✓
- 10.5 The centrifugal pump consists of a casing which contains a rotating wheel with blade or vanes. \checkmark
 - This rotating wheel is known as an impeller of the pump. \checkmark
 - If the pump casing is filled with fluid and the impeller is in operation, the impeller will sling the fluid outwards by centrifugal force, and force it out at the outlet. ✓
 - This creates a vacuum at the centre, or eye, of the impeller. ✓
 - As a result of atmospheric pressure, fluid is again drawn through this eye into the pump casing. ✓

(5)

[20]

TOTAL: 200

(Any 2)

(Any 2)

(2)

(2)