

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2014

AGRICULTURAL SCIENCES P2 MEMORANDUM

MARKS: 150

This memorandum consists of 11 pages.

SECTION A					
QUESTION 1.1			STION 1.2		
1.1.1	C√√	1.2.1	D $\sqrt{}$		
1.1.2	A $\sqrt{}$	1.2.2	$E\sqrt{1}$		
1.1.3	$B\sqrt{1}$	1.2.3	G √√		
1.1.4	A $\sqrt{}$	1.2.4	$B\!$		
1.1.5	D $\sqrt{}$	1.2.5	A √√		
1.1.6	C√√		(5 x 2) (10)		
1.1.7	$B\sqrt{1}$				
1.1.8	C√√				
1.1.9	$B\sqrt{1}$				
1.1.10	A √√ (10 x 2) (20)				
QUESTION 1.3		QUES	STION 1.4		
1.3.1	Autotrophs $\sqrt{}$	1.4.1	Energy $$		
1.3.2	Parthenocarpy/parthenocarpy $\sqrt{}$	1.4.2	Dormancy $$		
1.3.3	Scion $\sqrt[]{}$	1.4.3	Transpiration $$		
1.3.4	Evaporation pan $\sqrt{}$	1.4.4	aquaculture $$		
1.3.5	Flood/Furrow/Basin irrigation $\sqrt{\sqrt{5 \times 2}}$ (10)	1.4.5	xylem √ (5 x 1) (5)		

TOTAL SECTION A: 45

SECTION B

QUESTION 2: PLANT NUTRITION

2.1 2.1.1 Reasons for plants to have continuous water supply

- Water transports nutrients from the soil to the roots and to the leaves/Water is the medium for nutrient transport in plants. $\sqrt{}$
- Water transports the products of photosynthesis from leaves to the plant organs where it is used or stored. \checkmark
- Water provides structural support to plants and makes plants turgid. \checkmark
- Water regulates plant temperature and cools the plant. $\sqrt{}$
- Water provides the medium for metabolic processes/for all biochemical processes. $\sqrt{}$ (Any 3) (3)

2.1.2 Adaptations of plants to reduce excessive water loss

- Some leaves of plants have thick cuticles $\sqrt{}$
- Some leaves have small, sunken stomata $\sqrt{}$
- Some leaves are hairy (trichomes) $\sqrt{}$
- Some leaves have small surfaces (pinnas) $\sqrt{}$ (Any 2 x 1) (2)

2.1.3 **Part of plant for water and nutrient absorption**

Root hairs $$	(1)
---------------	-----

2.1.4 Transpiration pull

Upward pulling force exerted on the water column in plants $\sqrt{}$ when water is lost during transpiration $\sqrt{}$ (2) **Osmotic flow**

Movement of water through cells due to osmosis $\sqrt{\rm caused}$ by an osmotic gradient $\sqrt{\rm}$

2.2.1 **Processes of the dark phase of photosynthesis**

- Chemical energy is used to reduce CO_2 to glucose in the calvin cycle. \checkmark
- The reaction of the dark phase occur in the stroma of a chloroplast. $\boldsymbol{\surd}$
- The dark phase is controlled by enzymes and therefore affected by temperature $\sqrt{}$
- NADPH₂ which is formed during the light phase releases
- Hydrogen atoms and ATP releases excess energy it carries. $\sqrt{}$
- The hydrogen atoms and the liberated react with CO_2 taken up during photosynthesis to synthesise carbohydrates. $\sqrt{}$
- Starches are synthesised through the withdrawal of water molecules from the glucose molecules. \checkmark
- Glucose molecules combine with nitrate and sulphate ions and converted through enzymes to form plant proteins. √ (Any 3 x 1) (3)

(2)

2.2.2 Importance of photosynthesis to human beings

- It converts radiant energy from the sun to chemical energy. $\sqrt{}$
- Stored sugars such as carbohydrates are used by organisms such as human beings. ${\boldsymbol \sqrt}$
- Produces oxygen which is needed for cellular respiration by all living organisms. \checkmark
- The extraction of CO₂ from the atmosphere keeps the atmosphere clean and maintains a healthy environment. $\sqrt{}$
- It is the origin of fossilised fuels such as coal and petrol. $\sqrt{}$
- It traps the energy for bio fuels which are produced from plants to replace fossil fuels and limit global warming. $\sqrt{}$ (Any 3 x 1) (3)

2.2.3 Ways to increase the rate of photosynthesis

- Trellising to ensure that the fruit-bearing shoots have maximum exposure to sunlight for photosynthesis. \checkmark
- Pruning to avoid overshadowing and to give leaves and fruit-bearing shoots maximum exposure to sunlight for photosynthesis. $\sqrt{}$
- Spacing of crops to give leaves maximum light exposure. $\sqrt{}$
- Green-houses to allow plants to obtain maximum exposure through transparent roofs. √ (Any 2 x 1) (2)

2.3.1	Micro nutrients	Macro nutrients	
	Boron √	Potassium $$	
	Zinc $$	Nitrogen $$	(4)

2.3.2 **Functions of boron**

- Increases the uptake of water and calcium. $\sqrt{}$
- Essential for meristerm activity and growth of the pollen tube. $\sqrt{}$
- Involved in the translocation of carbohydrates. $\sqrt{}$ (Any 1) (1)

2.3.3 Ways of mineral nutrients uptake by plants

- Passive ion uptake by diffusion. $\sqrt{}$
- Active ion uptake by transport carrier molecules $\sqrt{}$ (2)

(3)

(3)

Reasons for the use of organic fertilisers 2.4 2.4.1

- Organic matter helps the soil to hold water especially in sandy soil. √
- Organic matter helps extra water to drain from clayey soil. $\sqrt{}$
- Organic matter helps to cool the soil in summer and to warm it in winter/it absorbs heat during the day and emits heat in the night. √
- Organic matter stops the soil from becoming hard and compacted. $\sqrt{}$
- Organic matter helps to improve aeration in the soil. $\sqrt{}$
- Organic matter binds the soil so that it is not eroded by wind or water. $\sqrt{}$
- Organic matter nutrients have lasting effect on the soil. $\sqrt{}$
- Organic matter improves the cat ion exchange capacity of the soil. √ (Any 3 x 1)

2.4.2 Characteristics of crops used for green manuring

- The seeds should be easily obtained. $\sqrt{}$ ٠
- The crop should grow rapidly. $\sqrt{}$ •
- It should have deeper root system in order to retrieve nutrients from deeper zones, thus making these available in the top soil $\sqrt{}$
- It should be a strong feeder and be able to utilise some of the slowly available reserve nutrients. $\sqrt{}$
- Legumes are generally used as they are able to fix nitrogen • gas. √
- It should have a high fibre content. $\sqrt{}$ (Any 3 x 1)

2.5 2.5.1 Calculation of percentage of phosphorus in the mixture

Nitrogen: 3 Phosphorus: 2 Potassium: 5 Total % of all 3 nutrients 45 $3 + 2 + 5 = 10 \sqrt{10}$ $P = 2/10 \times 45 \sqrt{=} 9\% \sqrt{}$

2.6 Uses of gypsum to grain farmers

- It decreases the bulk density of the soil making it easier to till. $\sqrt{}$
- It prevents crusting of soil and aids seed emergence $\sqrt{}$
- Gypsum prevents water logging $\sqrt{}$
- It decreases the loss of nitrogen fertiliser to the atmosphere $\sqrt{}$
- It helps plants to absorb nutrients $\sqrt{}$
- It stops water run-off and erosion $\sqrt{}$
- It improves soil structure. $\sqrt{}$
- Gypsum corrects soil acidity $\sqrt{}$
- Gypsum decreases heavy-metal toxicity in soils $\sqrt{}$
- It keeps clay particles from adhering to roots, bulbs and tubers $\sqrt{}$
- It helps earthworms to flourish and improves soil aeration $\sqrt{}$

(Any 1) (1) [35]

(3)

(NOVEMBER 2014)

QUESTION 3: PLANT REPRODUCTION

3.1	3.1.1	Pollination $$	(1)
	3.1.2	Water $$ wind $$	(2)
	3.1.3	Cross pollination/Pollination When pollen is transferred from the anther of a flower on one plant $$ to the stigma of a flower on another plant $$ of the same species. $$	
		OR	
		Transfer of pollen grains from ripe anther $$ to ripe stigma of a flower $$ of the same species. $$	(3)
3.2	3.2.1	Insect pest in 3.2.1	
		Lesser grain borer/grain borer	(1)
	3.2.2	 Insect-management methods to prevent stored grains infestation Sanitation – clean-up of old grain and grain debris √ Empty-bin spray with an insecticide √ Empty-bin fumigation, primarily to control insects in the subfloor space √ Storing only clean, dry grain √ Treating grain with a protecting insecticide √ Aeration to cool the grain to prevent insect feeding and reproduction √ Regular measurement of grain temperature and sampling for insects √ (Any 3 x 1) 	(3)
	3.2.3	Ideal temperature for life cycle in 3.2	
		25 °C – 32 °C √	(1)
	3.2.4	 Implications of heavy pest infestation in stored grains Severe stored grain infestation will lead to food shortages √ Price of grain crops on the local market will go up √ Foreign exchange of agricultural crops will decrease √ Control of the insects will be expensive. √ It would affect food security in the country √ It could demotivate potential grain farmers √ (Any 3 x 1) 	(3)

3.3 3.3.1 Natural methods Artificial methods Corms $\sqrt{}$ Layering $\sqrt{}$ Stolons $\sqrt{}$ Budding $\sqrt{}$ (4)

6

3.3.2 Advantages of vegetative propagation

- It is necessary for crops that cannot be propagated by seeds e.g. banana and sugar cane $\sqrt{}$
- Plants propagated by asexual means are true to type $\sqrt{1}$
- It is a very quick method of reproduction $\sqrt{}$
- Plants propagated by vegetative methods produce flowers and Fruits much earlier than seed produced plants √ (Any 2 x 1) (2)

3.4 3.4.1 Important characteristics of GMO crops

- Resistance and tolerance to diseases $\sqrt{}$
- Resistance to herbicides $\sqrt{}$
- Increased tolerance to drought and low moisture $\sqrt{}$
- Increased water use efficiency, they are able to produce more Yield with less water $\sqrt{}$
- Increased fertiliser use efficiency $\sqrt{}$
- They produce high yields $\sqrt{}$
- They are more nutritious $\sqrt{}$
- They have better keeping quality $\sqrt{}$ (Any 3 x 1) (3)

3.5 3.5.1 **One name for the group of organisms**

Bacteria √

(1)

3.5.2 Measures to prevent the spread of bacteria in plants

- Only use disease-free plant material such as seeds and seedlings $\boldsymbol{\sqrt{}}$
- Buy certified seeds from well-known companies $\sqrt{}$
- Sterilise water resources to make sure the water is free of diseases $\boldsymbol{\sqrt{}}$
- Destroy weeds and pathogens in the top soil layers by heat treatment $\boldsymbol{\sqrt{}}$
- Use chemicals like fungicides to eliminate inoculums $\sqrt{}$
- Use sterile equipment $\sqrt{}$
- Introduce good crop rotation programmes resistant crop varieties √ (Any 3 x 1) (3)

3.6.1 Ways weeds compete with crops on a farm

- For space √
- For sunlight $\sqrt{}$
- For soil nutrients $\sqrt{}$

3.6.2 Other ways weeds compete with crops

- Soil water/moisture $\sqrt{}$
 - For air $\sqrt{}$ (Any 1) (1)

(3)

	3.6.3	Chemical weed control It involves the use or application of chemical substances/ herbicides $$ to kill/eliminate weeds or suppress plant growth by altering their metabolic processes. $$	(2)
		Mechanical weed control It involves removing weeds physically, $$ either by hand or with tools or machinery. $$	(2) [35]
QUE	STION 4:	OPTIMAL RESOURCES	
4.1	4.1.1	Explanation of soil survey	
		It is the process of classifying soil types and their distinctive properties/differentiating soil types from one another in a given area, $$ and geo-encoding such information/interpreting and implementing the information. $$	(2)
	4.1.2	Aims of soil survey	
		 For the suitability for a particular crop √ Suitability for irrigation Suitability for animal grazing purposes √ To prevent erosion risk √ Identification for major agricultural land use e.g. gravel and marshy land √ (Any 2 x 1) 	(2)
	4.1.3	Steps to follow in the physical analysis of soil.	
		 Digging soil pits √ Determining soil profile √ Determining physical and chemical properties √ 	(3)
4.2	4.2.1	Type of farming in fig 4.2	
		Precision farming $$	(1)
	4.2.2	Aims of the method of the type of farming in QUESTION 4.2.1	
		 To minimise inputs. √ Maximise yields. √ To use sustainable practices such as pest, water and nutrient management. √ Reduces environmental risk of farming through accurate application of inputs e.g. limiting leaching. √ 	

8

It is the application of water to the soil or any growth medium	√ for
the purpose of benefiting the plant $$	(2)

Drainage

It is the removal of standing or excess water $\sqrt{10}$ from the surface and subsurface of a poorly drained soil. $\sqrt{10}$ (2) (4)

4.3.2 **Criteria to determine the water quality for irrigation**

- Check the pH of the water and the pH of the soil $\sqrt{}$
- Determine specific electrical conductivity of water $\sqrt{}$
- Determine the sodium adsorption ratio/sodality of the water should be determined $\sqrt{}$

4.3.3 Factors to consider when planning and applying an irrigation method

- Quantity of water available $\sqrt{}$
- Topography of the area to irrigate $\sqrt{}$
- Infiltration tempo of the soil/texture and structure of the soil $\sqrt{}$
- Type of crop to be grown on the field $\sqrt{}$
- Method of cultivation to be used $\sqrt{}$
- Installation cost $\sqrt{}$ (Any 2 x 1) (2)

4.4 4.4.1 Cropping system in QUESTION 4.4

Crop rotation $\sqrt{}$

4.4.2 Justification of cropping system in question 4.4

- Four different crops rotate over four growing seasons. $\sqrt{}$
- Deep rooted crops like roots and tubers are followed by shallow rooted crops like alliums. \checkmark
- Legumes are included to fix atmospheric nitrogen in the soil. $\sqrt{}$
- The field is divided into four equal plots and each plot has the same plant species. √ (Any 1 x 1) (1)

4.4.3 Factors which play a fundamental role in planning the cropping system in question 4.4

- Consider the climatic conditions in terms of rain and temperature $\boldsymbol{\sqrt{}}$
- The crop must be suited to that particular type of soil $\sqrt{}$
- Sufficient labour must be available $\sqrt{}$
- Determine the demand for the crop $\sqrt{}$
- Ensure the availability of machinery $\sqrt{}$
- Ensure competent management skills $\sqrt{}$
- Know the family for the crop selection/include legumes $\sqrt{}$

(Any 2 x 1) (2)

(3)

(1)

4.4.4 Benefits of the cropping system in QUESTION 4.4

- It helps to combat diseases, weeds and insect pests by • reducing their occurrence through changing host plants. $\sqrt{}$
- Reduces reliance on synthetic chemicals thus contributing toward saving. $\sqrt{}$
- Reduces soil nutrient depletion because different crops with different roots absorb nutrients from different soil dept. \checkmark
- Maintains soil fertility e.g. legumes add nitrogen to the soil through nitrogen fixation $\sqrt{}$
- Reduces soil erosion through growing crops which provide better soil cover and root system binding soil particles. $\sqrt{}$
- Spreads the risk of total crop failure. $\sqrt{}$
- Keeps the farmer and farm assistants competent in production and management skills involving many crops. $\sqrt{}$ (Any 2 x 1) (2)

Benefits of green house for production of high value cash 4.5 4.5.1 crops

- Optimal effectiveness in the utilisation of natural resources is achieved $\sqrt{}$
- Optimal production output is possible. $\sqrt{}$
- Better quality produce is achieved since insects/weeds and physical damage by wind can be totally eliminated. $\sqrt{}$
- Better scale of economy is achieved/can produce all year round √
- More effective $\sqrt{1}$ utilisation of unsuitable agricultural land. $\sqrt{1}$
- Risk of crop loss is minimal as plants are protected against natural hazards. $\sqrt{}$
- More pleasant working conditions than in open-fields. $\sqrt{}$

(Any 3 x 1) (3)

(2)

4.5.2 **Hydroponics**

The process of growing plants in liquid, with added nutrients $\sqrt{}$ but without soil. $\sqrt{}$

4.5.3 Growth mediums that support plants in hydroponics systems

- Pumice and perlite $\sqrt{}$
- Vermiculite √
- Expanded clay √
- Coir/peat √ ٠
- Wood fibre √
- Peat moss √
- Sawdust √
- Straw bales √
- Sand/gravel √
- Water √

(2)

4.5.4 Factors which may restrict farmers from choosing certain species for aquaculture

- Geographic location $\sqrt{}$
- Water supply √
- Availability of capital $\sqrt{}$
- Expertise and training $\sqrt{}$
- Availability of services $\sqrt{}$
- Market location √

- (Any 2 x 1) (2)
 - [35]
- TOTAL SECTION B: 105
 - GRAND TOTAL: 150

11